Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Parasitol ; 242: 108368, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36044962

RESUMEN

The Asian freshwater snail Melanoides tuberculata has been established since the 1960s in the Americas, where it transmits cercariae of a small number of digenetic trematode species from its native range. In 2021-2022, 24 M. tuberculata were discovered shedding transversotrematid cercariae in Puerto Rico, where parasites of this snail have not been previously studied. Adult transversotrematids (in some cases, gravid) were found on field-caught fish and on fish exposed to shedding snails, including on fish species native to Puerto Rico. Adults and cercariae were identified as Transversotrema patialense (Soparkar, 1924), a species native to the Indomalayan region. Morphological identification was supported with 28S rDNA sequences closely matching that from unidentified transversotrematid cercariae in Thailand. The absence of T. patialense in snails collected prior to 2021, increasing prevalence of infection in snails collected thereafter, and lack of variation in parasite DNA sequences (28S, internal transcribed spacer 2, cytochrome c oxidase I) from three isolates are consistent with a recently introduced and possibly expanding parasite population. Transversotrema patialense has been recorded outside its native range before, but most studies (including a prior record in the Americas) reported the parasite from captive hosts from commercial sources such as pet shops. The present results thus provide the first demonstration of natural transmission of T. patialense in the Americas. Phylogenetic analysis of 28S but not of ITS2 show the transversotrematid genus Transversotrema Witenberg, 1944 is paraphyletic, with Crusziella Cribb, Bray and Barker 1992 nested within it.


Asunto(s)
Parásitos , Trematodos , Infecciones por Trematodos , Animales , Filogenia , Complejo IV de Transporte de Electrones/genética , Trematodos/genética , Caracoles/parasitología , Cercarias , ADN Ribosómico , Infecciones por Trematodos/epidemiología , Infecciones por Trematodos/veterinaria , Infecciones por Trematodos/parasitología
2.
Gigascience ; 122022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-37496156

RESUMEN

Conflicts and natural disasters affect entire populations of the countries involved and, in addition to the thousands of lives destroyed, have a substantial negative impact on the scientific advances these countries provide. The unprovoked invasion of Ukraine by Russia, the devastating earthquake in Turkey and Syria, and the ongoing conflicts in the Middle East are just a few examples. Millions of people have been killed or displaced, their futures uncertain. These events have resulted in extensive infrastructure collapse, with loss of electricity, transportation, and access to services. Schools, universities, and research centers have been destroyed along with decades' worth of data, samples, and findings. Scholars in disaster areas face short- and long-term problems in terms of what they can accomplish now for obtaining grants and for employment in the long run. In our interconnected world, conflicts and disasters are no longer a local problem but have wide-ranging impacts on the entire world, both now and in the future. Here, we focus on the current and ongoing impact of war on the scientific community within Ukraine and from this draw lessons that can be applied to all affected countries where scientists at risk are facing hardship. We present and classify examples of effective and feasible mechanisms used to support researchers in countries facing hardship and discuss how these can be implemented with help from the international scientific community and what more is desperately needed. Reaching out, providing accessible training opportunities, and developing collaborations should increase inclusion and connectivity, support scientific advancements within affected communities, and expedite postwar and disaster recovery.


Asunto(s)
Conflictos Armados , Ciencia , Humanos , Ucrania
3.
Ecol Evol ; 3(13): 4488-500, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24340189

RESUMEN

Little is known about the natural history of the Sphaerodactylus species endemic to the three islands located in the Mona Passage separating the Greater Antillean islands of Hispaniola and Puerto Rico. In this study, parts of two mitochondrial genes, 16S rRNA and 12S rRNA, were sequenced to determine the relationships between the sphaerodactylids that live in the Mona Passage and other Caribbean species from the same genus. While the main goal was to identify the biogeographical origin of these species, we also identified a genetically distinct type of dwarf gecko that warrants future evaluation as a possible new species. According to the reconstructed phylogenies, we propose a stepwise model of colonization wherein S. nicholsi from southwestern Puerto Rico or a very close ancestor gave rise through a founder event to Sphaerodactylus monensis on Mona Island. In a similar fashion, S. monensis or a very close ancestor on Mona Island gave rise to S. levinsi on Desecheo Island. This study also suggests that the most recent common ancestor between the species from the islands in the Mona Passage and Puerto Rico existed approximately 3 MYA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...