Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37103875

RESUMEN

This work presents the photocatalytic degradation of organic pollutants in water with TiO2 and TiO2/Ag membranes prepared by immobilising photocatalysts on ceramic porous tubular supports. The permeation capacity of TiO2 and TiO2/Ag membranes was checked before the photocatalytic application, showing high water fluxes (≈758 and 690 L m-2 h-1 bar-1, respectively) and <2% rejection against the model pollutants sodium dodecylbenzene sulfonate (DBS) and dichloroacetic acid (DCA). When the membranes were submerged in the aqueous solutions and irradiated with UV-A LEDs, the photocatalytic performance factors for the degradation of DCA were similar to those obtained with suspended TiO2 particles (1.1-fold and 1.2-fold increase, respectively). However, when the aqueous solution permeated through the pores of the photocatalytic membrane, the performance factors and kinetics were two-fold higher than for the submerged membranes, mostly due to the enhanced contact between the pollutants and the membranes photocatalytic sites where reactive species were generated. These results confirm the advantages of working in a flow-through mode with submerged photocatalytic membranes for the treatment of water polluted with persistent organic molecules, thanks to the reduction in the mass transfer limitations.

2.
Front Bioeng Biotechnol ; 10: 1056162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483778

RESUMEN

With the increasing concern of neurodegenerative diseases, the development of new therapies and effective pharmaceuticals targeted to central nervous system (CNS) illnesses is crucial for ensuring social and economic sustainability in an ageing world. Unfortunately, many promising treatments at the initial stages of the pharmaceutical development process, that is at the in vitro screening stages, do not finally show the expected results at the clinical level due to their inability to cross the human blood-brain barrier (BBB), highlighting the inefficiency of in vitro BBB models to recapitulate the real functionality of the human BBB. In the last decades research has focused on the development of in vitro BBB models from basic 2D monolayer cultures to 3D cell co-cultures employing different system configurations. Particularly, the use of polymeric hollow fiber membranes (HFs) as scaffolds plays a key role in perfusing 3D dynamic in vitro BBB (DIV-BBB) models. Their incorporation into a perfusion bioreactor system may potentially enhance the vascularization and oxygenation of 3D cell cultures improving cell communication and the exchange of nutrients and metabolites through the microporous membranes. The quest for developing a benchmark 3D dynamic in vitro blood brain barrier model requires the critical assessment of the different aspects that limits the technology. This article will focus on identifying the advantages and main limitations of the HFs in terms of polymer materials, microscopic porous morphology, and other practical issues that play an important role to adequately mimic the physiological environment and recapitulate BBB architecture. Based on this study, we consider that future strategic advances of this technology to become fully implemented as a gold standard DIV-BBB model will require the exploration of novel polymers and/or composite materials, and the optimization of the morphology of the membranes towards thinner HFs (<50 µm) with higher porosities and surface pore sizes of 1-2 µm to facilitate the intercommunication via regulatory factors between the cell co-culture models of the BBB.

3.
Sci Rep ; 12(1): 13408, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927565

RESUMEN

Composites of polymer and graphene-based nanomaterials (GBNs) combine easy processing onto porous 3D membrane geometries due to the polymer and cellular differentiation stimuli due to GBNs fillers. Aiming to step forward to the clinical application of polymer/GBNs composites, this study performs a systematic and detailed comparative analysis of the influence of the properties of four different GBNs: (i) graphene oxide obtained from graphite chemically processes (GO); (ii) reduced graphene oxide (rGO); (iii) multilayered graphene produced by mechanical exfoliation method (Gmec); and (iv) low-oxidized graphene via anodic exfoliation (Ganodic); dispersed in polycaprolactone (PCL) porous membranes to induce astrocytic differentiation. PCL/GBN flat membranes were fabricated by phase inversion technique and broadly characterized in morphology and topography, chemical structure, hydrophilicity, protein adsorption, and electrical properties. Cellular assays with rat C6 glioma cells, as model for cell-specific astrocytes, were performed. Remarkably, low GBN loading (0.67 wt%) caused an important difference in the response of the C6 differentiation among PCL/GBN membranes. PCL/rGO and PCL/GO membranes presented the highest biomolecule markers for astrocyte differentiation. Our results pointed to the chemical structural defects in rGO and GO nanomaterials and the protein adsorption mechanisms as the most plausible cause conferring distinctive properties to PCL/GBN membranes for the promotion of astrocytic differentiation. Overall, our systematic comparative study provides generalizable conclusions and new evidences to discern the role of GBNs features for future research on 3D PCL/graphene composite hollow fiber membranes for in vitro neural models.


Asunto(s)
Grafito , Nanoestructuras , Animales , Grafito/química , Poliésteres/química , Polímeros , Ratas
4.
Biomolecules ; 12(8)2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892322

RESUMEN

In this work, we performed a methodological comparative analysis to synthesize polyethyleneimine (PEI) nanoparticles using (i) conventional nanoprecipitation (NP), (ii) electrospraying (ES), and (iii) coaxial electrospraying (CA). The nanoparticles transported antisense oligonucleotides (ASOs), either encapsulated (CA nanocomplexes) or electrostatically bound externally (NP and ES nanocomplexes). After synthesis, the PEI/ASO nanoconjugates were functionalized with a muscle-specific RNA aptamer. Using this combinatorial formulation methodology, we obtained nanocomplexes that were further used as nanocarriers for the delivery of RNA therapeutics (ASO), specifically into muscle cells. In particular, we performed a detailed confocal microscopy-based comparative study to analyze the overall transfection efficiency, the cell-to-cell homogeneity, and the mean fluorescence intensity per cell of micron-sized domains enriched with the nanocomplexes. Furthermore, using high-magnification electron microscopy, we were able to describe, in detail, the ultrastructural basis of the cellular uptake and intracellular trafficking of nanocomplexes by the clathrin-independent endocytic pathway. Our results are a clear demonstration that coaxial electrospraying is a promising methodology for the synthesis of therapeutic nanoparticle-based carriers. Some of the principal features that the nanoparticles synthesized by coaxial electrospraying exhibit are efficient RNA-based drug encapsulation, increased nanoparticle surface availability for aptamer functionalization, a high transfection efficiency, and hyperactivation of the endocytosis and early/late endosome route as the main intracellular uptake mechanism.


Asunto(s)
Nanopartículas , Polietileneimina , Células Musculares , Nanoconjugados , Nanopartículas/química , Polietileneimina/química , ARN , Transfección
5.
Polymers (Basel) ; 13(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668209

RESUMEN

The effect of the temperature, as a process variable in the fabrication of polymeric membranes by the non-solvent induced phase separation (NIPS) technique, has been scarcely studied. In the present work, we studied the influence of temperature, working at 293, 313 and 333 K, on the experimental binodal curves of four ternary systems composed of PVDF and PES as the polymers, DMAc and NMP as the solvents and water as the non-solvent. The increase of the temperature caused an increase on the solubility gap of the ternary system, as expected. The shift of the binodal curve with the temperature was more evident in PVDF systems than in PES systems indicating the influence of the rubbery or glassy state of the polymer on the thermodynamics of phase separation. As a novelty, the present work has introduced the temperature influence on the Flory-Huggins model to fit the experimental cloud points. Binary interaction parameters were calculated as a function of the temperature: (i) non-solvent/solvent (g12) expressions with UNIFAC-Dortmund methodology and (ii) non-solvent/polymer (χ13) and solvent/polymer (χ23) using Hansen solubility parameters. Additionally, the effect of the ternary interaction term was not negligible in the model. Estimated ternary interaction parameters (χ123) presented a linear relation with temperature and negative values, indicating that the solubility of the polymers in mixtures of solvent/non-solvent was higher than expected for single binary interaction. Finally, PES ternary systems exhibited higher influence of the ternary interaction parameter than PVDF systems.

6.
Membranes (Basel) ; 10(8)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32708027

RESUMEN

There is a huge interest in developing novel hollow fiber (HF) membranes able to modulate neural differentiation to produce in vitro blood-brain barrier (BBB) models for biomedical and pharmaceutical research, due to the low cell-inductive properties of the polymer HFs used in current BBB models. In this work, poly(ε-caprolactone) (PCL) and composite PCL/graphene (PCL/G) HF membranes were prepared by phase inversion and were characterized in terms of mechanical, electrical, morphological, chemical, and mass transport properties. The presence of graphene in PCL/G membranes enlarged the pore size and the water flux and presented significantly higher electrical conductivity than PCL HFs. A biocompatibility assay showed that PCL/G HFs significantly increased C6 cells adhesion and differentiation towards astrocytes, which may be attributed to their higher electrical conductivity in comparison to PCL HFs. On the other hand, PCL/G membranes produced a cytotoxic effect on the endothelial cell line HUVEC presumably related with a higher production of intracellular reactive oxygen species induced by the nanomaterial in this particular cell line. These results prove the potential of PCL HF membranes to grow endothelial cells and PCL/G HF membranes to differentiate astrocytes, the two characteristic cell types that could develop in vitro BBB models in future 3D co-culture systems.

7.
Macromol Biosci ; 18(11): e1800195, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30253070

RESUMEN

The effect of doping graphene oxide (GO) and reduced graphene oxide (rGO) into poly(ε-caprolactone) (PCL) membranes prepared by solvent induced phase separation is evaluated in terms of nanomaterial distribution and compatibility with neural stem cell growth and functional differentiation. Raman spectra analyses demonstrate the homogeneous distribution of GO on the membrane surface while rGO concentration increases gradually toward the center of the membrane thickness. This behavior is associated with electrostatic repulsion that PCL exerted toward the polar GO and its affinity for the non-polar rGO. In vitro cell studies using human induced pluripotent cell derived neural progenitor cells (NPCs) show that rGO increases marker expression of NPCs differentiation with respect to GO (significantly to tissue culture plate (TCP)). Moreover, the distinctive nanomaterials distribution defines the cell-to-nanomaterial interaction on the PCL membranes: GO nanomaterials on the membrane surface favor higher number of active matured neurons, while PCL/rGO membranes present cells with significantly higher magnitude of neural activity compared to TCP and PCL/GO despite there being no direct contact of rGO with the cells on the membrane surface. Overall, this work evidences the important role of rGO electrical properties on the stimulation of neural cell electro-activity on PCL membrane scaffolds.


Asunto(s)
Diferenciación Celular , Grafito/química , Membranas Artificiales , Células-Madre Neurales/metabolismo , Poliésteres/química , Antígenos de Diferenciación/biosíntesis , Regulación de la Expresión Génica , Humanos , Células-Madre Neurales/citología , Oxidación-Reducción
8.
Membranes (Basel) ; 8(3)2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30071589

RESUMEN

High porosity and mass transport properties of microfiltration polymeric membranes benefit nutrients supply to cells when used as scaffolds in interstitial perfusion bioreactors for tissue engineering. High nutrients transport is assumed when pore size and porosity of the membrane are in the micrometric range. The present work demonstrates that the study of membrane fouling by proteins present in the culture medium, though not done usually, should be included in the routine testing of new polymer membranes for this intended application. Two poly(ε-caprolactone) microfiltration membranes presenting similar average pore size (approximately 0.7 µm) and porosity (>80%) but different external surface porosity and pore size have been selected as case studies. The present work demonstrates that a membrane with lower surface pore abundance and smaller external pore size (approximately 0.67 µm), combined with adequate hydrodynamics and tangential flow filtration mode is usually more convenient to guarantee high flux of nutrients. On the contrary, having large external pore size (approximately 1.70 µm) and surface porosity would incur important internal protein fouling that could not be prevented with the operation mode and hydrodynamics of the perfusion system. Additionally, the use of glycerol in the drying protocols of the membranes might cause plasticization and a consequent reduction of mass transport properties due to membrane compaction by the pressure exerted to force perfusion. Therefore, preferentially, drying protocols that omit the use of plasticizing agents are recommended.

9.
Membranes (Basel) ; 8(1)2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29510552

RESUMEN

The present work studies the functional behavior of novel poly(ε-caprolactone) (PCL) membranes functionalized with reduced graphene oxide (rGO) nanoplatelets under simulated in vitro culture conditions (phosphate buffer solution (PBS) at 37 °C) during 1 year, in order to elucidate their applicability as scaffolds for in vitro neural regeneration. The morphological, chemical, and DSC results demonstrated that high internal porosity of the membranes facilitated water permeation and procured an accelerated hydrolytic degradation throughout the bulk pathway. Therefore, similar molecular weight reduction, from 80 kDa to 33 kDa for the control PCL, and to 27 kDa for PCL/rGO membranes, at the end of the study, was observed. After 1 year of hydrolytic degradation, though monomers coming from the hydrolytic cleavage of PCL diffused towards the PBS medium, the pH was barely affected, and the rGO nanoplatelets mainly remained in the membranes which envisaged low cytotoxic effect. On the other hand, the presence of rGO nanomaterials accelerated the loss of mechanical stability of the membranes. However, it is envisioned that the gradual degradation of the PCL/rGO membranes could facilitate cells infiltration, interconnectivity, and tissue formation.

10.
Environ Sci Pollut Res Int ; 25(35): 34922-34929, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29305801

RESUMEN

Electrochemical oxidation (ELOX) with boron-doped diamond (BDD) anodes was successfully applied to degrade a model aqueous solution of a mixture of commercial naphthenic acids (NAs). The model mixture was prepared resembling the NA and salt composition of oil sands process-affected water (OSPW) as described in the literature. The initial concentration of NAs between 70 and 120 mg/L did not influence the electrooxidation kinetics. However, increasing the applied current density from 20 to 100 A/m2 and the initial chloride concentration from 15 to 70 and 150 mg/L accelerated the rate of NA degradation. At higher chloride concentration, the formation of indirect oxidative species could contribute to the faster oxidation of NAs. Complete chemical oxygen demand removal at an initial NA concentration of 120 mg/L, 70 mg/L of chloride and applied 50 A/m2 of current density was achieved, and 85% mineralization, defined as the decrease of the total organic carbon (TOC) content, was attained. Moreover, after 6 h of treatment and independently on the experimental conditions, the formation of more toxic species, i.e. perchlorate and organochlorinated compounds, was not detected. Finally, the use of ELOX with BDD anodes produced a 7 to 11-fold reduction of toxicity (IC50 towards Vibrio fischeri) after 2 h of treatment.


Asunto(s)
Ácidos Carboxílicos/química , Modelos Químicos , Contaminantes Químicos del Agua/química , Aliivibrio fischeri , Análisis de la Demanda Biológica de Oxígeno , Boro/química , Diamante/química , Electrodos , Yacimiento de Petróleo y Gas , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis , Purificación del Agua
11.
J Hazard Mater ; 344: 950-957, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29197229

RESUMEN

The inherent resistance of perfluoroalkyl substances (PFASs) to biological degradation makes necessary to develop advanced technologies for the abatement of this group of hazardous substances. The present work investigated the photocatalytic decomposition of perfluorooctanoic acid (PFOA) using a composite catalyst based on TiO2 and reduced graphene oxide (95% TiO2/5% rGO) that was synthesized using a facile hydrothermal method. The efficient photoactivity of the TiO2-rGO (0.1gL-1) composite was confirmed for PFOA (0.24mmolL-1) degradation that reached 93±7% after 12h of UV-vis irradiation using a medium pressure mercury lamp, a great improvement compared to the TiO2 photocatalysis (24±11% PFOA removal) and direct photolysis (58±9%). These findings indicate that rGO provided the suited properties of TiO2-rGO, possibly as a result of acting as electron acceptor and avoiding the high recombination electron/hole pairs. The release of fluoride and the formation of shorter-chain perfluorocarboxilyc acids, that were progressively eliminated in a good match with the analysed reduction of total organic carbon, is consistent with a step-by-step PFOA decomposition via photogenerated hydroxyl radicals. Finally, the apparent first order rate constants of the TiO2-rGO UV-vis PFOA decompositions, and the intermediate perfluorcarboxylic acids were found to increase as the length of the carbon chain was shorter.

12.
Acta Biomater ; 9(5): 6450-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23318815

RESUMEN

At present the manufacture of small-diameter blood vessels is one of the main challenges in the field of vascular tissue engineering. Currently available vascular grafts rapidly fail due to development of intimal hyperplasia and thrombus formation. Poly(lactic-co-glycolic acid) (PLGA) hollow fiber (HF) membranes have previously been proposed for this application, but as we show in the present work, they have an inhibiting effect on cell proliferation and rather poor mechanical properties. To overcome this we prepared HF membranes via phase inversion using blends of PLGA with poly(ε-caprolactone) (PCL). The influence of polymer composition on the HF physicochemical properties (topography, water transport and mechanical properties) and cell attachment and proliferation were studied. Our results show that only the ratio PCL/PLGA of 85/15 (PCL/PLGA85/15) yielded a miscible blend after processing. A higher PLGA concentration in the blend led to immiscible PCL/PLGA phase-separated HFs with an inhomogeneous morphology and variation in the cell culture results. In fact, the PCL/PLGA85/15 blend, which had the most homogeneous morphology and suitable pore structure, showed better human adipose stem cell (hASC) attachment and proliferation compared with the homopolymers. This, combined with the good mechanical and transport properties, makes them potentially useful for the development of small-caliber vascular grafts.


Asunto(s)
Vasos Sanguíneos , Ácido Láctico/química , Poliésteres/química , Ácido Poliglicólico/química , Ingeniería de Tejidos , Células Cultivadas , Femenino , Humanos , Persona de Mediana Edad , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
13.
J Hazard Mater ; 192(2): 801-7, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21704452

RESUMEN

This work reports the feasibility of applying emulsion pertraction technology (EPT) aiming at zinc recovery and waste minimization in the zinc electroplating processes that include Cr (III) passivation. The assessment consists of firstly the lifetime extension of the passivation baths by selective removal of the tramp ions zinc and iron, and secondly, the recovery of zinc for further reuse. Spent passivation baths from a local industry were tested, being the major metallic content: Cr(3+) 9000mg L(-1), Zn(2+) 12,000mg L(-1), Fe(3+) 100mg L(-1). Working in a Liqui-Cel hollow fiber membrane contactor and using the extractant bis(2,4,4-trimethylpentyl) phosphinic acid, reduction of zinc and iron concentrations below 60mg L(-1) and 2mg L(-1), respectively were obtained, while trivalent chromium, the active metal that generates the passivation layer, was retained in the baths. Zinc was selectively transferred to an acidic stripping phase that in the experimental time reached a concentration of 157,000mg L(-1). Zinc recovery by electrowinning from the acidic stripping phase without any pretreatment of the electrolyte solution provided a purity of 98.5%, matching the lower commercial zinc grade. As a result of the extension of the life time of the passivation bath, significant environmental advantages are derived such as minimization of the volume of hazardous wastes and savings in the consumption of raw materials.


Asunto(s)
Cromo/química , Aguas del Alcantarillado , Zinc/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...