Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anesthesiology ; 141(1): 32-43, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38466210

RESUMEN

BACKGROUND: Research on electronic health record physiologic data is common, invariably including artifacts. Traditionally, these artifacts have been handled using simple filter techniques. The authors hypothesized that different artifact detection algorithms, including machine learning, may be necessary to provide optimal performance for various vital signs and clinical contexts. METHODS: In a retrospective single-center study, intraoperative operating room and intensive care unit (ICU) electronic health record datasets including heart rate, oxygen saturation, blood pressure, temperature, and capnometry were included. All records were screened for artifacts by at least two human experts. Classical artifact detection methods (cutoff, multiples of SD [z-value], interquartile range, and local outlier factor) and a supervised learning model implementing long short-term memory neural networks were tested for each vital sign against the human expert reference dataset. For each artifact detection algorithm, sensitivity and specificity were calculated. RESULTS: A total of 106 (53 operating room and 53 ICU) patients were randomly selected, resulting in 392,808 data points. Human experts annotated 5,167 (1.3%) data points as artifacts. The artifact detection algorithms demonstrated large variations in performance. The specificity was above 90% for all detection methods and all vital signs. The neural network showed significantly higher sensitivities than the classic methods for heart rate (ICU, 33.6%; 95% CI, 33.1 to 44.6), systolic invasive blood pressure (in both the operating room [62.2%; 95% CI, 57.5 to 71.9] and the ICU [60.7%; 95% CI, 57.3 to 71.8]), and temperature in the operating room (76.1%; 95% CI, 63.6 to 89.7). The CI for specificity overlapped for all methods. Generally, sensitivity was low, with only the z-value for oxygen saturation in the operating room reaching 88.9%. All other sensitivities were less than 80%. CONCLUSIONS: No single artifact detection method consistently performed well across different vital signs and clinical settings. Neural networks may be a promising artifact detection method for specific vital signs.


Asunto(s)
Algoritmos , Artefactos , Registros Electrónicos de Salud , Aprendizaje Automático , Signos Vitales , Humanos , Estudios Retrospectivos , Signos Vitales/fisiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Reconocimiento de Normas Patrones Automatizadas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...