Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1327241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371299

RESUMEN

Plasmid-encoded toxin (Pet) is an autotransporter protein of the serine protease autotransporters of Enterobacteriaceae (SPATE) family, important in the pathogenicity of Escherichia coli. The pet gene was initially found in the enteroaggregative E. coli (EAEC) virulence plasmid, pAA2. Although this virulence factor was initially described in EAEC, an intestinal E. coli pathotype, pet may also be present in other pathotypes, including extraintestinal pathogenic strains (ExPEC). The complement system is an important defense mechanism of the immune system that can be activated by invading pathogens. Proteases produced by pathogenic bacteria, such as SPATEs, have proteolytic activity and can cleave components of the complement system, promoting bacterial resistance to human serum. Considering these factors, the proteolytic activity of Pet and its role in evading the complement system were investigated. Proteolytic assays were performed by incubating purified components of the complement system with Pet and Pet S260I (a catalytic site mutant) proteins. Pet, but not Pet S260I, could cleave C3, C5 and C9 components, and also inhibited the natural formation of C9 polymers. Furthermore, a dose-dependent inhibition of ZnCl2-induced C9 polymerization in vitro was observed. E. coli DH5α survived incubation with human serum pre-treated with Pet. Therefore, Pet can potentially interfere with the alternative and the terminal pathways of the complement system. In addition, by cleaving C9, Pet may inhibit membrane attack complex (MAC) formation on the bacterial outer membrane. Thus, our data are suggestive of a role of Pet in resistance of E. coli to human serum.


Asunto(s)
Toxinas Bacterianas , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas del Sistema Complemento/metabolismo , Serina Proteasas/metabolismo , Infecciones por Escherichia coli/microbiología , Plásmidos/genética
2.
Front Microbiol ; 11: 604544, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33505374

RESUMEN

This study discussed the use of antimicrobials in the commercial chicken production system and the possible factors influencing the presence of Extended-spectrum ß-lactamase (ESBL)/AmpC producers strains in the broiler production chain. The aim of this study was to perform longitudinal monitoring of ESBL-producing and fosfomycin-resistant Escherichia coli from poultry farms in southern Brazil (Paraná and Rio Grande do Sul states) and determine the possible critical points that may be reservoirs for these strains. Samples of poultry litter, cloacal swabs, poultry feed, water, and beetles (Alphitobius sp.) were collected during three distinct samplings. Phenotypic and genotypic tests were performed for characterization of antimicrobial resistant strains. A total of 117 strains were isolated and 78 (66%) were positive for ESBL production. The poultry litter presented ESBL positive strains in all three sampled periods, whereas the cloacal swab presented positive strains only from the second period. The poultry litter represents a significant risk factor mainly at the beginning poultry production (odds ratio 6.43, 95% confidence interval 1-41.21, p < 0.05). All beetles presented ESBL positive strains. The predominant gene was bla CTX-M group 2, which occurred in approximately 55% of the ESBL-producing E. coli. The cit gene was found in approximately 13% of the ESBL-producing E. coli as AmpC type determinants. A total of 19 out of 26 fosfomycin-resistant strains showed the fosA3 gene, all of which produced ESBL. The correlation between fosA3 and bla CTX-M group 1 (bla CTX-M55 ) genes was significant among ESBL-producing E. coli isolated from Paraná (OR 3.66, 95% CI 1.9-9.68) and these genetic determinants can be transmitted by conjugation to broiler chicken microbiota strains. Our data revealed that poultry litter and beetles were critical points during poultry production and the presence of fosfomycin-resistant strains indicate the possibility of risks associated with the use of this antimicrobial during production. Furthermore, the genetic determinants encoding CTX-M and fosA3 enzymes can be transferred to E. coli strains from broiler chicken microbiota, thereby creating a risk to public health.

3.
Curr Pharm Biotechnol ; 20(13): 1108-1121, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31400263

RESUMEN

The epidemiological impact of viral diseases, combined with the emergence and reemergence of some viruses, and the difficulties in identifying effective therapies, have encouraged several studies to develop new therapeutic strategies for viral infections. In this context, the use of immunotherapy for the treatment of viral diseases is increasing. One of the strategies of immunotherapy is the use of antibodies, particularly the monoclonal antibodies (mAbs) and multi-specific antibodies, which bind directly to the viral antigen and bring about activation of the immune system. With current advancements in science and technology, several such antibodies are being tested, and some are already approved and are undergoing clinical trials. The present work aims to review the status of mAb development for the treatment of viral diseases.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Inmunoterapia/métodos , Virosis/tratamiento farmacológico , Animales , Ensayos Clínicos como Asunto , Humanos , Virosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA