Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Antibiotics (Basel) ; 13(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38786132

RESUMEN

This study investigates the in vitro activity of Nα-aroyl-N-aryl-phenylalanine amides (AAPs), previously identified as antimycobacterial RNA polymerase (RNAP) inhibitors, against a panel of 25 non-tuberculous mycobacteria (NTM). The compounds, including the hit compound MMV688845, were selected based on their structural diversity and previously described activity against mycobacteria. Bacterial strains, including the M. abscessus complex, M. avium complex, and other clinically relevant NTM, were cultured and subjected to growth inhibition assays. The results demonstrate significant activity against the most common NTM pathogens from the M. abscessus and M. avium complexes. Variations in activity were observed against other NTM species, with for instance M. ulcerans displaying high susceptibility and M. xenopi and M. simiae resistance to AAPs. Comparative analysis of RNAP ß and ß' subunits across mycobacterial species revealed strain-specific polymorphisms, providing insights into differential compound susceptibility. While conservation of target structures was observed, differences in compound activity suggested influences beyond drug-target interactions. This study highlights the potential of AAPs as effective antimycobacterial agents and emphasizes the complex interplay between compound structure, bacterial genetics, and in vitro activity.

2.
Respir Physiol Neurobiol ; : 104281, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38768741

RESUMEN

Shape and size of the nasopharyngeal airway is controlled by muscles innervated facial, glossopharyngeal, vagal, and hypoglossal cranial nerves. Contrary to brainstem networks that drive facial, vagal and hypoglossal nerve activities (FNA, VNA, HNA) the discharge patterns and origins of glossopharyngeal nerve activity (GPNA) remain poorly investigated. Here, an in situ perfused brainstem preparation (n=19) was used for recordings of GPNA in relation to phrenic (PNA), FNA, VNA and HNA. Brainstem transections were performed (n=10/19) to explore the role of pontomedullary synaptic interactions in generating GPNA. GPNA generally mirrors FNA and HNA discharge patterns and displays pre-inspiratory activity relative to the PNA, followed by robust inspiratory discharge in coincidence with PNA. Postinspiratory (early expiratory) discharge was, contrary to VNA, generally absent in FNA, GPNA or HNA. As described previously FNA and HNA discharge was virtually eliminated after pontomedullary transection while an apneustic inspiratory motor discharge was maintained in PNA, VNA and GPNA. After brainstem transection GPNA displayed an increased tonic activity starting during mid-expiration and thus developed prolonged pre-inspiratory activity compared to control. In conclusion respiratory GPNA reflects FNA and HNA which implies similar function in controlling upper airway patency during breathing. That GPNA preserved its pre-inspiratory/inspiratory discharge pattern in relation PNA after pontomedullary transection suggest that GPNA premotor circuits may have a different anatomical distribution compared HNA and FNA and thus may therefore hold a unique role in in preserving airway patency.

3.
Tuberculosis (Edinb) ; 147: 102503, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38729070

RESUMEN

Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.

4.
Antimicrob Agents Chemother ; : e0003424, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690896

RESUMEN

The dual ß-lactam approach has been successfully applied to overcome target redundancy in nontuberculous mycobacteria. Surprisingly, this approach has not been leveraged for Mycobacterium tuberculosis, despite the high conservation of peptidoglycan synthesis. Through a comprehensive screen of oral ß-lactam pairs, we have discovered that cefuroxime strongly potentiates the bactericidal activity of tebipenem and sulopenem-advanced clinical candidates-and amoxicillin, at concentrations achieved clinically. ß-lactam pairs thus have the potential to reduce TB treatment duration.

6.
ChemMedChem ; 19(6): e202300593, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38329388

RESUMEN

Nα-aroyl-N-aryl-phenylalanine amides (AAPs) are RNA polymerase inhibitors with activity against Mycobacterium tuberculosis and non-tuberculous mycobacteria. We observed that AAPs rapidly degrade in microsomal suspensions, suggesting that avoiding hepatic metabolism is critical for their effectiveness in vivo. As both amide bonds are potential metabolic weak points of the molecule, we synthesized 16 novel AAP analogs in which the amide bonds are shielded by methyl or fluoro substituents in close proximity. Some derivatives show improved microsomal stability, while being plasma-stable and non-cytotoxic. In parallel with the metabolic stability studies, the antimycobacterial activity of the AAPs against Mycobacterium tuberculosis, Mycobacterium abscessus, Mycobacterium avium and Mycobacterium intracellulare was determined. The stability data are discussed in relation to the antimycobacterial activity of the panel of compounds and reveal that the concept of steric shielding of the anilide groups by a fluoro substituent has the potential to improve the stability and bioavailability of AAPs.


Asunto(s)
Antibacterianos , Mycobacterium tuberculosis , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Amidas/farmacología
7.
Nat Rev Drug Discov ; 23(5): 381-403, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38418662

RESUMEN

Tuberculosis (TB) drug discovery and development has undergone nothing short of a revolution over the past 20 years. Successful public-private partnerships and sustained funding have delivered a much-improved understanding of mycobacterial disease biology and pharmacology and a healthy pipeline that can tolerate inevitable attrition. Preclinical and clinical development has evolved from decade-old concepts to adaptive designs that permit rapid evaluation of regimens that might greatly shorten treatment duration over the next decade. But the past 20 years also saw the rise of a fatal and difficult-to-cure lung disease caused by nontuberculous mycobacteria (NTM), for which the drug development pipeline is nearly empty. Here, we discuss the similarities and differences between TB and NTM lung diseases, compare the preclinical and clinical advances, and identify major knowledge gaps and areas of cross-fertilization. We argue that applying paradigms and networks that have proved successful for TB, from basic research to clinical trials, will help to populate the pipeline and accelerate curative regimen development for NTM disease.


Asunto(s)
Antituberculosos , Infecciones por Mycobacterium no Tuberculosas , Humanos , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Antituberculosos/uso terapéutico , Antituberculosos/farmacología , Animales , Desarrollo de Medicamentos/métodos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Micobacterias no Tuberculosas/efectos de los fármacos , Descubrimiento de Drogas , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/microbiología
8.
J Neuroinflammation ; 21(1): 45, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331902

RESUMEN

BACKGROUND: Sepsis has a high mortality rate due to multiple organ failure. However, the influence of peripheral inflammation on brainstem autonomic and respiratory circuits in sepsis is poorly understood. Our working hypothesis is that peripheral inflammation affects central autonomic circuits and consequently contributes to multiorgan failure in sepsis. METHODS: In an Escherichia coli (E. coli)-fibrin clot model of peritonitis, we first recorded ventilatory patterns using plethysmography before and 24 h after fibrin clot implantation. To assess whether peritonitis was associated with brainstem neuro-inflammation, we measured cytokine and chemokine levels in Luminex assays. To determine the effect of E. coli peritonitis on brainstem function, we assessed sympatho-respiratory nerve activities at baseline and during brief (20 s) hypoxemic ischemia challenges using in situ-perfused brainstem preparations (PBPs) from sham or infected rats. PBPs lack peripheral organs and blood, but generate vascular tone and in vivo rhythmic activities in thoracic sympathetic (tSNA), phrenic and vagal nerves. RESULTS: Respiratory frequency was greater (p < 0.001) at 24 h post-infection with E. coli than in the sham control. However, breath-by-breath variability and total protein in the BALF did not differ. IL-1ß (p < 0.05), IL-6 (p < 0.05) and IL-17 (p < 0.04) concentrations were greater in the brainstem of infected rats. In the PBP, integrated tSNA (p < 0.05) and perfusion pressure were greater (p < 0.001), indicating a neural-mediated pathophysiological high sympathetic drive. Moreover, respiratory frequency was greater (p < 0.001) in PBPs from infected rats than from sham rats. Normalized phase durations of inspiration and expiration were greater (p < 0.009, p < 0.015, respectively), but the post-inspiratory phase (p < 0.007) and the breath-by-breath variability (p < 0.001) were less compared to sham PBPs. Hypoxemic ischemia triggered a biphasic response, respiratory augmentation followed by depression. PBPs from infected rats had weaker respiratory augmentation (p < 0.001) and depression (p < 0.001) than PBPs from sham rats. In contrast, tSNA in E. coli-treated PBPs was enhanced throughout the entire response to hypoxemic ischemia (p < 0.01), consistent with sympathetic hyperactivity. CONCLUSION: We show that peripheral sepsis caused brainstem inflammation and impaired sympatho-respiratory motor control in a single day after infection. We conclude that central sympathetic hyperactivity may impact vital organ systems in sepsis.


Asunto(s)
Peritonitis , Sepsis , Ratas , Animales , Escherichia coli , Inflamación , Tronco Encefálico , Sepsis/complicaciones , Fibrina , Isquemia
9.
J Biol Chem ; 300(2): 105618, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176652

RESUMEN

The F1FO-ATP synthase engine is essential for viability and growth of nontuberculous mycobacteria (NTM) by providing the biological energy ATP and keeping ATP homeostasis under hypoxic stress conditions. Here, we report the discovery of the diarylquinoline TBAJ-5307 as a broad spectrum anti-NTM inhibitor, targeting the FO domain of the engine and preventing rotation and proton translocation. TBAJ-5307 is active at low nanomolar concentrations against fast- and slow-growing NTM as well as clinical isolates by depleting intrabacterial ATP. As demonstrated for the fast grower Mycobacterium abscessus, the compound is potent in vitro and in vivo, without inducing toxicity. Combining TBAJ-5307 with anti-NTM antibiotics or the oral tebipenem-avibactam pair showed attractive potentiation. Furthermore, the TBAJ-5307-tebipenem-avibactam cocktail kills the pathogen, suggesting a novel oral combination for the treatment of NTM lung infections.


Asunto(s)
Antibacterianos , Diarilquinolinas , Inhibidores Enzimáticos , Infecciones por Mycobacterium no Tuberculosas , Micobacterias no Tuberculosas , Humanos , Adenosina Trifosfato , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo , Carbapenémicos , Inhibidores Enzimáticos/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Diarilquinolinas/farmacología
10.
Antimicrob Agents Chemother ; 68(1): e0071723, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38018963

RESUMEN

The Mycobacterium abscessus drug development pipeline is poorly populated, with particularly few validated target-lead couples to initiate de novo drug discovery. Trimethoprim, an inhibitor of dihydrofolate reductase (DHFR) used for the treatment of a range of bacterial infections, is not active against M. abscessus. Thus, evidence that M. abscessus DHFR is vulnerable to pharmacological intervention with a small molecule inhibitor is lacking. Here, we show that the pyrrolo-quinazoline PQD-1, previously identified as a DHFR inhibitor active against Mycobacterium tuberculosis, exerts whole cell activity against M. abscessus. Enzyme inhibition studies showed that PQD-1, in contrast to trimethoprim, is a potent inhibitor of M. abscessus DHFR and over-expression of DHFR causes resistance to PQD-1, providing biochemical and genetic evidence that DHFR is a vulnerable target and mediates PQD-1's growth inhibitory activity in M. abscessus. As observed in M. tuberculosis, PQD-1 resistant mutations mapped to the folate pathway enzyme thymidylate synthase (TYMS) ThyA. Like trimethoprim in other bacteria, PQD-1 synergizes with the dihydropteroate synthase (DHPS) inhibitor sulfamethoxazole (SMX), offering an opportunity to exploit the successful dual inhibition of the folate pathway and develop similarly potent combinations against M. abscessus. PQD-1 is active against subspecies of M. abscessus and a panel of clinical isolates, providing epidemiological validation of the target-lead couple. Leveraging a series of PQD-1 analogs, we have demonstrated a dynamic structure-activity relationship (SAR). Collectively, the results identify M. abscessus DHFR as an attractive target and PQD-1 as a chemical starting point for the discovery of novel drugs and drug combinations that target the folate pathway in M. abscessus.


Asunto(s)
Antagonistas del Ácido Fólico , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Humanos , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Antagonistas del Ácido Fólico/farmacología , Trimetoprim/farmacología , Mycobacterium tuberculosis/metabolismo , Inhibidores Enzimáticos/farmacología , Ácido Fólico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico
11.
J Infect Dis ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38150401

RESUMEN

Cure rates for pulmonary disease caused by the Mycobacterium avium complex (MAC) are poor. While ß-lactam are front line antibiotics against M. abscessus pulmonary disease, they have not been used or recommended to treat MAC lung infections. Through a comprehensive screen of oral ß-lactams, we have discovered that selected pairs combining either a penem/carbapenem or penicillin with a cephalosporin are strongly bactericidal at clinically achieved concentrations. These dual ß-lactam combinations include tebipenem and sulopenem, both in Phase 3, and FDA-approved amoxicillin and cefuroxime. They could therefore immediately enter clinical trials or clinical practice.

12.
Microbiol Spectr ; 11(6): e0228223, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37982630

RESUMEN

IMPORTANCE: New drugs are needed to combat multidrug-resistant tuberculosis. The electron transport chain (ETC) maintains the electrochemical potential across the cytoplasmic membrane and allows the production of ATP, the energy currency of any living cell. The mycobacterial engine F-ATP synthase catalyzes the formation of ATP and has come into focus as an attractive and rich drug target. Recent deep insights into these mycobacterial F1FO-ATP synthase elements opened the door for a renaissance of structure-based target identification and inhibitor design. In this study, we present the GaMF1.39 antimycobacterial compound, targeting the rotary subunit γ of the biological engine. The compound is bactericidal, inhibits infection ex vivo, and displays enhanced anti-tuberculosis activity in combination with ETC inhibitors, which promises new strategies to shorten tuberculosis chemotherapy.


Asunto(s)
Clofazimina , Mycobacterium tuberculosis , Clofazimina/farmacología , Clofazimina/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Adenosina Trifosfato
13.
Microbiol Spectr ; : e0190023, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37681986

RESUMEN

The clinical utility of rifamycins against non-tuberculous mycobacterial (NTM) disease is limited by intrinsic drug resistance achieved by ADP-ribosyltransferase Arr. By blocking the site of ribosylation, we recently optimized a series of analogs with substantially improved potency against Mycobacterium abscessus. Here, we show that a representative member of this series is significantly more potent than rifabutin against major NTM pathogens expressing Arr, providing a powerful medicinal chemistry approach to expand the antimycobacterial spectrum of rifamycins. IMPORTANCE Lung disease caused by a range of different species of non-tuberculous mycobacteria (NTM) is difficult to cure. The rifamycins are very active against Mycobacterium tuberculosis, which causes tuberculosis (TB), but inactive against many NTM species. Previously, we showed that the natural resistance of the NTM Mycobacterium abscessus to rifamycins is due to enzymatic inactivation of the drug by the bacterium. We generated chemically modified versions of rifamycins that prevent inactivation by the bacterium and thus become highly active against M. abscessus. Here, we show that such a chemically modified rifamycin is also highly active against several additional NTM species that harbor the rifamycin inactivating enzyme found in M. abscessus, including M. chelonae, M. fortuitum, and M. simiae. This finding expands the potential therapeutic utility of our novel rifamycins to include several currently difficult-to-cure NTM lung disease pathogens beyond M. abscessus.

14.
Front Netw Physiol ; 3: 1038531, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583625

RESUMEN

Introduction: Biometrics of common physiologic signals can reflect health status. We have developed analytics to measure the predictability of ventilatory pattern variability (VPV, Nonlinear Complexity Index (NLCI) that quantifies the predictability of a continuous waveform associated with inhalation and exhalation) and the cardioventilatory coupling (CVC, the tendency of the last heartbeat in expiration to occur at preferred latency before the next inspiration). We hypothesized that measures of VPV and CVC are sensitive to the development of endotoxemia, which evoke neuroinflammation. Methods: We implanted Sprague Dawley male rats with BP transducers to monitor arterial blood pressure (BP) and recorded ventilatory waveforms and BP simultaneously using whole-body plethysmography in conjunction with BP transducer receivers. After baseline (BSLN) recordings, we injected lipopolysaccharide (LPS, n = 8) or phosphate buffered saline (PBS, n =3) intraperitoneally on 3 consecutive days. We recorded for 4-6 h after the injection, chose 3 epochs from each hour and analyzed VPV and CVC as well as heart rate variability (HRV). Results: First, the responses to sepsis varied across rats, but within rats the repeated measures of NLCI, CVC, as well as respiratory frequency (fR), HR, BP and HRV had a low coefficient of variation, (<0.2) at each time point. Second, HR, fR, and NLCI increased from BSLN on Days 1-3; whereas CVC decreased on Days 2 and 3. In contrast, changes in BP and the relative low-(LF) and high-frequency (HF) of HRV were not significant. The coefficient of variation decreased from BSLN to Day 3, except for CVC. Interestingly, NLCI increased before fR in LPS-treated rats. Finally, we histologically confirmed lung injury, systemic inflammation via ELISA and the presence of the proinflammatory cytokine, IL-1ß, with immunohistochemistry in the ponto-medullary respiratory nuclei. Discussion: Our findings support that NLCI reflects changes in the rat's health induced by systemic injection of LPS and reflected in increases in HR and fR. CVC decreased over the course to the experiment. We conclude that NLCI reflected the increase in predictability of the ventilatory waveform and (together with our previous work) may reflect action of inflammatory cytokines on the network generating respiration.

15.
Microbiol Spectr ; 11(4): e0219923, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37458588

RESUMEN

Single-step selection of Mycobacterium abscessus mutants resistant to linezolid yielded high-level resistance at a low frequency that was associated with mutations in 23S rRNA or the ribosomal protein L3. Surprisingly, linezolid-resistant rRNA mutations conferred cross-resistance to several unrelated antibiotics. Low-level linezolid-resistant mutants were isolated at a higher frequency and were due to loss-of-function mutations in the transcriptional regulator MAB_4384, the repressor of the drug efflux pump MmpL5-MmpS5. IMPORTANCE The protein synthesis inhibitor linezolid is used for the treatment of lung disease caused by Mycobacterium abscessus. However, many strains of the bacterium show poor susceptibility to the antibiotic. For most clinical isolates, resistance is not due to mutations in the target of the drug, the ribosome. The mechanism responsible for non-target-related, indirect linezolid resistance is unknown. Here, we analyzed the development of linezolid resistance in the M. abscessus reference strain in vitro. We found, as expected, resistance mutations in the ribosome. In addition, we identified mutations in a system that involves a drug pump, suggesting drug efflux as a mechanism of resistance to linezolid. This finding may inform the analysis of clinical resistance to linezolid. Surprisingly, a subset of linezolid-resistant ribosome mutations conferred cross-resistance to several structurally and mechanistically unrelated drugs, uncovering a novel multidrug resistance mechanism.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Humanos , Linezolid/farmacología , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mutación
16.
Antimicrob Agents Chemother ; 67(9): e0038123, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37493373

RESUMEN

Necrotic lesions and cavities filled with caseum are a hallmark of mycobacterial pulmonary disease. Bronchocavitary Mycobacterium abscessus disease is associated with poor treatment outcomes. In caseum surrogate, M. abscessus entered an extended stationary phase showing tolerance to killing by most current antibiotics, suggesting that caseum persisters contribute to the poor performance of available treatments. Novel ADP-ribosylation-resistant rifabutin analogs exhibited bactericidal activity against these M. abscessus persisters at concentrations achievable by rifamycins in caseum.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Rifamicinas , Humanos , Rifabutina/farmacología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana
17.
J Med Chem ; 66(11): 7553-7569, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37235809

RESUMEN

We tested a series of SQ109 analogues against Mycobacterium tuberculosis and M. smegmatis, in addition to determining their uncoupling activity. We then investigated potential protein targets, involved in quinone and cell wall biosynthesis, using "rescue" experiments. There was little effect of menaquinone on growth inhibition by SQ109, but there were large increases in the IC50 of SQ109 and its analogues (up to 20×) on addition of undecaprenyl phosphate (Up), a homologue of the mycobacterial decaprenyl (C50) diphosphate. Inhibition of an undecaprenyl diphosphate phosphatase, an ortholog of the mycobacterial phosphatase, correlated with cell growth inhibition, and we found that M. smegmatis cell growth inhibition could be well predicted by using uncoupler and Up-rescue results. We also investigated whether SQ109 was metabolized inside Mycobacterium tuberculosis, finding only a single metabolite, previously shown to be inactive. The results are of general interest since they help explain the mechanism of SQ109 in mycobacteria.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Antituberculosos/farmacología , Antituberculosos/metabolismo , Difosfatos/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Mycobacterium smegmatis
18.
Expert Opin Drug Discov ; 18(4): 363-370, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37027333

RESUMEN

INTRODUCTION: Novel antibiotics are needed to keep antibiotic resistance at bay and to improve treatment of the many drug-susceptible infections for which current therapies achieve poor cure rates. While revolutionizing human therapeutics, the concept of targeted protein degradation (TPD) by bifunctional proteolysis targeting chimeras (PROTACs) has not yet been applied to the discovery of antibiotics. A major obstacle precluding successful translation of this strategy to antibiotic development is that bacteria lack the E3 ligase-proteasome system exploited by human PROTACs to facilitate target degradation. AREAS COVERED: The authors describe the serendipitous discovery of the first monofunctional target-degrading antibiotic pyrazinamide, supporting TPD as a viable and novel approach in antibiotic discovery. They then discuss the rational design, mechanism, and activity of the first bifunctional antibacterial target degrader BacPROTAC, enabling a generalizable approach to TPD in bacteria. EXPERT OPINION: BacPROTACs demonstrate that linking a target directly to a bacterial protease complex can promote target degradation. BacPROTACs successfully bypass the 'middleman' E3 ligase, providing an entry strategy for the generation of antibacterial PROTACs. We speculate that antibacterial PROTACs will not only expand the target space but may also improve treatment by allowing dosage reduction, stronger bactericidal activity and activity against drug-tolerant 'persisters.'


Asunto(s)
Antibacterianos , Ubiquitina-Proteína Ligasas , Humanos , Antibacterianos/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis
19.
J Med Chem ; 66(7): 5079-5098, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37001025

RESUMEN

Nα-2-thiophenoyl-d-phenylalanine-2-morpholinoanilide [MMV688845, Pathogen Box; Medicines for Malaria Venture; IUPAC: (2R)-N-(1-((2-morpholinophenyl)amino)-1-oxo-3-phenylpropan-2-yl)thiophene-2-carboxamide)] is a hit compound, which shows activity against Mycobacterium abscessus (MIC90 6.25-12.5 µM) and other mycobacteria. This work describes derivatization of MMV688845 by introducing a thiomorpholine moiety and the preparation of the corresponding sulfones and sulfoxides. The molecular structures of three analogs are confirmed by X-ray crystallography. Conservation of the essential R configuration during synthesis is proven by chiral HPLC for an exemplary compound. All analogs were characterized in a MIC assay against M. abscessus, Mycobacterium intracellulare, Mycobacterium smegmatis, and Mycobacterium tuberculosis. The sulfone derivatives exhibit lower MIC90 values (M. abscessus: 0.78 µM), and the sulfoxides show higher aqueous solubility than the hit compound. The most potent derivatives possess bactericidal activity (99% inactivation of M. abscessus at 12.5 µM), while they are not cytotoxic against mammalian cell lines.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Animales , Amidas , Antibacterianos/farmacología , Antibacterianos/química , Mamíferos , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/microbiología
20.
Antimicrob Agents Chemother ; 67(4): e0165522, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36920191

RESUMEN

New oxazolidinones are in clinical development for the treatment of tuberculosis and nontuberculous mycobacterial (NTM) infections, as a replacement for linezolid and tedizolid, which cause mitochondrial toxicity after prolonged treatment. Here, we carried out side-by-side measurements of mitochondrial protein synthesis inhibition and activity against clinically relevant mycobacterial pathogens of approved and novel oxazolidinones. We found a large range of selectivity indices suggesting TBI-223 and sutezolid as promising candidates against tuberculosis and NTM lung disease caused by Mycobacterium kansasii.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Oxazolidinonas , Tuberculosis , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Oxazolidinonas/farmacología , Oxazolidinonas/uso terapéutico , Linezolid/farmacología , Linezolid/uso terapéutico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Tuberculosis/tratamiento farmacológico , Micobacterias no Tuberculosas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA