Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 2160, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061529

RESUMEN

TRIM proteins are the largest family of E3 ligases in mammals. They include the intracellular antibody receptor TRIM21, which is responsible for mediating targeted protein degradation during Trim-Away. Despite their importance, the ubiquitination mechanism of TRIM ligases has remained elusive. Here we show that while Trim-Away activation results in ubiquitination of both ligase and substrate, ligase ubiquitination is not required for substrate degradation. N-terminal TRIM21 RING ubiquitination by the E2 Ube2W can be inhibited by N-terminal acetylation, but this doesn't prevent substrate ubiquitination nor degradation. Instead, uncoupling ligase and substrate degradation prevents ligase recycling and extends functional persistence in cells. Further, Trim-Away degrades substrates irrespective of whether they contain lysines or are N-terminally acetylated, which may explain the ability of TRIM21 to counteract fast-evolving pathogens and degrade diverse substrates.


Asunto(s)
Lisina , Ubiquitina-Proteína Ligasas , Animales , Lisina/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Mamíferos/metabolismo
2.
Nat Struct Mol Biol ; 28(3): 278-289, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33633400

RESUMEN

Trim-Away is a recently developed technology that exploits off-the-shelf antibodies and the RING E3 ligase and cytosolic antibody receptor TRIM21 to carry out rapid protein depletion. How TRIM21 is catalytically activated upon target engagement, either during its normal immune function or when repurposed for targeted protein degradation, is unknown. Here we show that a mechanism of target-induced clustering triggers intermolecular dimerization of the RING domain to switch on the ubiquitination activity of TRIM21 and induce virus neutralization or drive Trim-Away. We harness this mechanism for selective degradation of disease-causing huntingtin protein containing long polyglutamine tracts and expand the Trim-Away toolbox with highly active TRIM21-nanobody chimeras that can also be controlled optogenetically. This work provides a mechanism for cellular activation of TRIM RING ligases and has implications for targeted protein degradation technologies.


Asunto(s)
Proteolisis , Ribonucleoproteínas/metabolismo , Ubiquitinación , Animales , Biocatálisis , Línea Celular , Drosophila melanogaster/citología , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Ratones , Modelos Moleculares , Optogenética , Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína , Ribonucleoproteínas/química , Ubiquitina-Proteína Ligasas/metabolismo
3.
Anal Chem ; 93(8): 3786-3793, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33593049

RESUMEN

The HIV capsid is a multifunctional protein capsule that mediates the delivery of the viral genetic material into the nucleus of the target cell. Host cell proteins bind to a number of repeating binding sites on the capsid to regulate steps in the replication cycle. Here, we develop a fluorescence fluctuation spectroscopy method using self-assembled capsid particles as the bait to screen for fluorescence-labeled capsid-binding analytes ("prey" molecules) in solution. The assay capitalizes on the property of the HIV capsid as a multivalent interaction platform, facilitating high sensitivity detection of multiple prey molecules that have accumulated onto capsids as spikes in fluorescence intensity traces. By using a scanning stage, we reduced the measurement time to 10 s without compromising on sensitivity, providing a rapid binding assay for screening libraries of potential capsid interactors. The assay can also identify interfaces for host molecule binding by using capsids with defects in known interaction interfaces. Two-color coincidence detection using the fluorescent capsid as the bait further allows the quantification of binding levels and determination of binding affinities. Overall, the assay provides new tools for the discovery and characterization of molecules used by the HIV capsid to orchestrate infection. The measurement principle can be extended for the development of sensitive interaction assays, utilizing natural or synthetic multivalent scaffolds as analyte-binding platforms.


Asunto(s)
Cápside , VIH-1 , Sitios de Unión , Proteínas de la Cápside , Espectrometría de Fluorescencia
4.
Nat Commun ; 10(1): 4502, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31582740

RESUMEN

The cytosolic antibody receptor TRIM21 possesses unique ubiquitination activity that drives broad-spectrum anti-pathogen targeting and underpins the protein depletion technology Trim-Away. This activity is dependent on formation of self-anchored, K63-linked ubiquitin chains by the heterodimeric E2 enzyme Ube2N/Ube2V2. Here we reveal how TRIM21 facilitates ubiquitin transfer and differentiates this E2 from other closely related enzymes. A tri-ionic motif provides optimally distributed anchor points that allow TRIM21 to wrap an Ube2N~Ub complex around its RING domain, locking the closed conformation and promoting ubiquitin discharge. Mutation of these anchor points inhibits ubiquitination with Ube2N/Ube2V2, viral neutralization and immune signalling. We show that the same mechanism is employed by the anti-HIV restriction factor TRIM5 and identify spatially conserved ionic anchor points in other Ube2N-recruiting RING E3s. The tri-ionic motif is exclusively required for Ube2N but not Ube2D1 activity and provides a generic E2-specific catalysis mechanism for RING E3s.


Asunto(s)
Lisina/metabolismo , Ribonucleoproteínas/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación/fisiología , Secuencias de Aminoácidos/genética , Factores de Restricción Antivirales , Biocatálisis , Cristalografía por Rayos X , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitina-Proteína Ligasas/metabolismo
5.
Elife ; 72018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29848441

RESUMEN

The HIV capsid is semipermeable and covered in electropositive pores that are essential for viral DNA synthesis and infection. Here, we show that these pores bind the abundant cellular polyanion IP6, transforming viral stability from minutes to hours and allowing newly synthesised DNA to accumulate inside the capsid. An arginine ring within the pore coordinates IP6, which strengthens capsid hexamers by almost 10°C. Single molecule measurements demonstrate that this renders native HIV capsids highly stable and protected from spontaneous collapse. Moreover, encapsidated reverse transcription assays reveal that, once stabilised by IP6, the accumulation of new viral DNA inside the capsid increases >100 fold. Remarkably, isotopic labelling of inositol in virus-producing cells reveals that HIV selectively packages over 300 IP6 molecules per infectious virion. We propose that HIV recruits IP6 to regulate capsid stability and uncoating, analogous to picornavirus pocket factors. HIV-1/IP6/capsid/co-factor/reverse transcription.


Asunto(s)
Cápside/metabolismo , ADN Viral/biosíntesis , VIH-1/metabolismo , Polímeros/metabolismo , Adenosina Trifosfato/metabolismo , Cápside/ultraestructura , Células HEK293 , VIH-1/ultraestructura , Humanos , Nucleótidos/metabolismo , Polielectrolitos , Inhibidores de la Transcriptasa Inversa/farmacología , Transcripción Reversa/efectos de los fármacos , Transcripción Reversa/genética , Subtilisina/metabolismo , Virión/efectos de los fármacos , Virión/metabolismo , Ensamble de Virus/efectos de los fármacos
6.
J Biol Chem ; 291(46): 23989-23998, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27681593

RESUMEN

Hemolysis is a complication in septic infections with Staphylococcus aureus, which utilizes the released Hb as an iron source. S. aureus can acquire heme in vitro from hemoglobin (Hb) by a heme-sequestering mechanism that involves proteins from the S. aureus iron-regulated surface determinant (Isd) system. However, the host has its own mechanism to recapture the free Hb via haptoglobin (Hp) binding and uptake of Hb-Hp by the CD163 receptor in macrophages. It has so far remained unclear how the Isd system competes with this host iron recycling system in situ to obtain the important nutrient. By binding and uptake studies, we now show that the IsdH protein, which serves as an Hb receptor in the Isd system, directly interferes with the CD163-mediated clearance by binding the Hb-Hp complex and inhibiting CD163 recognition. Analysis of truncated IsdH variants including one or more of three near iron transporter domains, IsdHN1, IsdHN2, and IsdHN3, revealed that Hb binding of IsdHN1 and IsdHN2 accounted for the high affinity for Hb-Hp complexes. The third near iron transporter domain, IsdHN3, exhibited redox-dependent heme extraction, when Hb in the Hb-Hp complex was in the oxidized met form but not in the reduced oxy form. IsdB, the other S. aureus Hb receptor, failed to extract heme from Hb-Hp, and it was a poor competitor for Hb-Hp binding to CD163. This indicates that Hb recognition by IsdH, but not by IsdB, sterically inhibits the receptor recognition of Hb-Hp. This function of IsdH may have an overall stimulatory effect on S. aureus heme acquisition and growth.


Asunto(s)
Haptoglobinas/metabolismo , Hemo/metabolismo , Staphylococcus aureus/metabolismo , Animales , Antígenos Bacterianos , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/metabolismo , Células CHO , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Cricetinae , Cricetulus , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Dominios Proteicos , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Staphylococcus aureus/genética
7.
J Mol Biol ; 428(6): 1107-1129, 2016 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25687963

RESUMEN

Staphylococcus aureus is a medically important bacterial pathogen that, during infections, acquires iron from human hemoglobin (Hb). It uses two closely related iron-regulated surface determinant (Isd) proteins to capture and extract the oxidized form of heme (hemin) from Hb, IsdH and IsdB. Both receptors rapidly extract hemin using a conserved tri-domain unit consisting of two NEAT (near iron transporter) domains connected by a helical linker domain. To gain insight into the mechanism of extraction, we used NMR to investigate the structure and dynamics of the 38.8-kDa tri-domain IsdH protein (IsdH(N2N3), A326-D660 with a Y642A mutation that prevents hemin binding). The structure was modeled using long-range paramagnetic relaxation enhancement (PRE) distance restraints, dihedral angle, small-angle X-ray scattering, residual dipolar coupling and inter-domain NOE nuclear Overhauser effect data. The receptor adopts an extended conformation wherein the linker and N3 domains pack against each other via a hydrophobic interface. In contrast, the N2 domain contacts the linker domain via a hydrophilic interface and, based on NMR relaxation data, undergoes inter-domain motions enabling it to reorient with respect to the body of the protein. Ensemble calculations were used to estimate the range of N2 domain positions compatible with the PRE data. A comparison of the Hb-free and Hb-bound forms reveals that Hb binding alters the positioning of the N2 domain. We propose that binding occurs through a combination of conformational selection and induced-fit mechanisms that may promote hemin release from Hb by altering the position of its F helix.


Asunto(s)
Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Hemoglobinas/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Conformación Proteica
8.
Proc Natl Acad Sci U S A ; 112(32): 10014-9, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26150489

RESUMEN

Tripartite motif (TRIM) 21 is a cytosolic antibody receptor that neutralizes antibody-coated viruses that penetrate the cell and simultaneously activates innate immunity. Here we show that the conjugation of TRIM21 with K63-linked ubiquitin (Ub-(63)Ub) catalyzed by the sequential activity of nonredundant E2 Ub enzymes is required for its dual antiviral functions. TRIM21 is first labeled with monoubiquitin (monoUb) by the E2 Ube2W. The monoUb is a substrate for the heterodimeric E2 Ube2N/Ube2V2, resulting in TRIM21-anchored Ub-(63)Ub. Depletion of either E2 abolishes Ub-(63)Ub and Ub-(48)Ub conjugation of TRIM21, NF-κB signaling, and virus neutralization. The formation of TRIM21-Ub-(63)Ub precedes proteasome recruitment, and we identify an essential role for the 19S-resident and degradation-coupled deubiquitinase Poh1 in TRIM21 neutralization, signaling, and cytokine induction. This study elucidates a complex mechanism of step-wise ubiquitination and deubiquitination activities that allows contemporaneous innate immune signaling and neutralization by TRIM21.


Asunto(s)
Ribonucleoproteínas/metabolismo , Ubiquitinación , Animales , Línea Celular , Citocinas/genética , Humanos , Lisina/metabolismo , Ratones , Modelos Biológicos , FN-kappa B/metabolismo , Pruebas de Neutralización , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Especificidad por Sustrato , Transactivadores/metabolismo , Transcripción Genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
9.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 6): 1295-306, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26057669

RESUMEN

Staphylococcus aureus is a common and serious cause of infection in humans. The bacterium expresses a cell-surface receptor that binds to, and strips haem from, human haemoglobin (Hb). The binding interface has previously been identified; however, the structural changes that promote haem release from haemoglobin were unknown. Here, the structure of the receptor-Hb complex is reported at 2.6 Å resolution, which reveals a conformational change in the α-globin F helix that disrupts the haem-pocket structure and alters the Hb quaternary interactions. These features suggest potential mechanisms by which the S. aureus Hb receptor induces haem release from Hb.


Asunto(s)
Antígenos Bacterianos/química , Hemoglobinas/química , Receptores de Superficie Celular/química , Staphylococcus aureus/química , Globinas alfa/química , Modelos Moleculares , Conformación Proteica
10.
J Biol Chem ; 289(10): 6728-6738, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24425866

RESUMEN

Staphylococcus aureus causes life-threatening disease in humans. The S. aureus surface protein iron-regulated surface determinant H (IsdH) binds to mammalian hemoglobin (Hb) and extracts heme as a source of iron, which is an essential nutrient for the bacteria. However, the process of heme transfer from Hb is poorly understood. We have determined the structure of IsdH bound to human Hb by x-ray crystallography at 4.2 Å resolution, revealing the structural basis for heme transfer. One IsdH molecule is bound to each α and ß Hb subunit, suggesting that the receptor acquires iron from both chains by a similar mechanism. Remarkably, two near iron transporter (NEAT) domains in IsdH perform very different functions. An N-terminal NEAT domain binds α/ß globin through a site distant from the globin heme pocket and, via an intervening structural domain, positions the C-terminal heme-binding NEAT domain perfectly for heme transfer. These data, together with a 2.3 Å resolution crystal structure of the isolated N-terminal domain bound to Hb and small-angle x-ray scattering of free IsdH, reveal how multiple domains of IsdH cooperate to strip heme from Hb. Many bacterial pathogens obtain iron from human hemoglobin using proteins that contain multiple NEAT domains and other domains whose functions are poorly understood. Our results suggest that, rather than acting as isolated units, NEAT domains may be integrated into higher order architectures that employ multiple interaction interfaces to efficiently extract heme from host proteins.


Asunto(s)
Antígenos Bacterianos/química , Hemo/química , Hemoglobinas/química , Hierro/metabolismo , Receptores de Superficie Celular/química , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Cristalografía por Rayos X , Humanos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Infecciones Estafilocócicas/sangre
11.
J Infect Dis ; 209(11): 1764-72, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24338348

RESUMEN

Staphylococcus aureus is a Gram-positive pathogen responsible for tremendous morbidity and mortality. As with most bacteria, S. aureus requires iron to cause disease, and it can acquire iron from host hemoglobin. The current model for staphylococcal hemoglobin-iron acquisition proposes that S. aureus binds hemoglobin through the surface-exposed hemoglobin receptor IsdB. IsdB removes heme from bound hemoglobin and transfers this cofactor to other proteins of the Isd system, which import and degrade heme to release iron in the cytoplasm. Here we demonstrate that the individual components of the Isd system are required for growth on low nanomolar concentrations of hemoglobin as a sole source of iron. An in-depth study of hemoglobin binding by IsdB revealed key residues that are required for hemoglobin binding. Further, we show that these residues are necessary for heme extraction from hemoglobin and growth on hemoglobin as a sole iron source. These processes are found to contribute to the pathogenicity of S. aureus in a murine model of infection. Together these results build on the model for Isd-mediated hemoglobin binding and heme-iron acquisition during the pathogenesis of S. aureus infection.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Hemo/metabolismo , Hemoglobinas/metabolismo , Unión Proteica/fisiología , Staphylococcus aureus/metabolismo , Proteínas de Transporte de Catión/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Variación Genética , Genoma Bacteriano , Humanos , Staphylococcus aureus/patogenicidad , Virulencia
12.
J Biol Chem ; 288(27): 19986-20001, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23696640

RESUMEN

α-Hemoglobin (αHb)-stabilizing protein (AHSP) is a molecular chaperone that assists hemoglobin assembly. AHSP induces changes in αHb heme coordination, but how these changes are facilitated by interactions at the αHb·AHSP interface is not well understood. To address this question we have used NMR, x-ray absorption spectroscopy, and ligand binding measurements to probe αHb conformational changes induced by AHSP binding. NMR chemical shift analyses of free CO-αHb and CO-αHb·AHSP indicated that the seven helical elements of the native αHb structure are retained and that the heme Fe(II) remains coordinated to the proximal His-87 side chain. However, chemical shift differences revealed alterations of the F, G, and H helices and the heme pocket of CO-αHb bound to AHSP. Comparisons of iron-ligand geometry using extended x-ray absorption fine structure spectroscopy showed that AHSP binding induces a small 0.03 Å lengthening of the Fe-O2 bond, explaining previous reports that AHSP decreases αHb O2 affinity roughly 4-fold and promotes autooxidation due primarily to a 3-4-fold increase in the rate of O2 dissociation. Pro-30 mutations diminished NMR chemical shift changes in the proximal heme pocket, restored normal O2 dissociation rate and equilibrium constants, and reduced O2-αHb autooxidation rates. Thus, the contacts mediated by Pro-30 in wild-type AHSP promote αHb autooxidation by introducing strain into the proximal heme pocket. As a chaperone, AHSP facilitates rapid assembly of αHb into Hb when ßHb is abundant but diverts αHb to a redox resistant holding state when ßHb is limiting.


Asunto(s)
Proteínas Sanguíneas/química , Hemoglobina A/química , Hierro/química , Chaperonas Moleculares/química , Oxígeno/química , Oxihemoglobinas/química , Sitios de Unión , Proteínas Sanguíneas/metabolismo , Hemoglobina A/metabolismo , Humanos , Hierro/metabolismo , Chaperonas Moleculares/metabolismo , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Oxígeno/metabolismo , Oxihemoglobinas/metabolismo , Estructura Secundaria de Proteína
13.
Cold Spring Harb Perspect Med ; 3(3): a011858, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23388674

RESUMEN

Diseases affecting hemoglobin synthesis and function are extremely common worldwide. More than 1000 naturally occurring human hemoglobin variants with single amino acid substitutions throughout the molecule have been discovered, mainly through their clinical and/or laboratory manifestations. These variants alter hemoglobin structure and biochemical properties with physiological effects ranging from insignificant to severe. Studies of these mutations in patients and in the laboratory have produced a wealth of information on hemoglobin biochemistry and biology with significant implications for hematology practice. More generally, landmark studies of hemoglobin performed over the past 60 years have established important paradigms for the disciplines of structural biology, genetics, biochemistry, and medicine. Here we review the major classes of hemoglobin variants, emphasizing general concepts and illustrative examples.


Asunto(s)
Hemoglobinopatías/genética , Hemoglobinas/clasificación , Mutación/genética , Hemoglobinas/biosíntesis , Hemoglobinas/química , Hemoglobinas Anormales/genética , Humanos , Metahemoglobina/clasificación , Oxígeno/fisiología
14.
J Biol Chem ; 288(2): 1065-78, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23132864

RESUMEN

Staphylococcus aureus is a leading cause of life-threatening infections in the United States. It requires iron to grow, which must be actively procured from its host to successfully mount an infection. Heme-iron within hemoglobin (Hb) is the most abundant source of iron in the human body and is captured by S. aureus using two closely related receptors, IsdH and IsdB. Here we demonstrate that each receptor captures heme using two conserved near iron transporter (NEAT) domains that function synergistically. NMR studies of the 39-kDa conserved unit from IsdH (IsdH(N2N3), Ala(326)-Asp(660)) reveals that it adopts an elongated dumbbell-shaped structure in which its NEAT domains are properly positioned by a helical linker domain, whose three-dimensional structure is determined here in detail. Electrospray ionization mass spectrometry and heme transfer measurements indicate that IsdH(N2N3) extracts heme from Hb via an ordered process in which the receptor promotes heme release by inducing steric strain that dissociates the Hb tetramer. Other clinically significant Gram-positive pathogens capture Hb using receptors that contain multiple NEAT domains, suggesting that they use a conserved mechanism.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas de Transporte de Catión/metabolismo , Hemo/metabolismo , Hemoglobinas/metabolismo , Receptores de Superficie Celular/metabolismo , Staphylococcus aureus/metabolismo , Clonación Molecular , Humanos , Resonancia Magnética Nuclear Biomolecular , Proteolisis
15.
J Biol Chem ; 286(44): 38439-38447, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21917915

RESUMEN

Pathogens must steal iron from their hosts to establish infection. In mammals, hemoglobin (Hb) represents the largest reservoir of iron, and pathogens express Hb-binding proteins to access this source. Here, we show how one of the commonest and most significant human pathogens, Staphylococcus aureus, captures Hb as the first step of an iron-scavenging pathway. The x-ray crystal structure of Hb bound to a domain from the Isd (iron-regulated surface determinant) protein, IsdH, is the first structure of a Hb capture complex to be determined. Surface mutations in Hb that reduce binding to the Hb-receptor limit the capacity of S. aureus to utilize Hb as an iron source, suggesting that Hb sequence is a factor in host susceptibility to infection. The demonstration that pathogens make highly specific recognition complexes with Hb raises the possibility of developing inhibitors of Hb binding as antibacterial agents.


Asunto(s)
Antígenos Bacterianos/química , Hemoglobinas/química , Receptores de Superficie Celular/química , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/química , Cristalografía por Rayos X/métodos , Humanos , Hierro/química , Ligandos , Luz , Conformación Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Superficie Celular/metabolismo , Espectrofotometría Ultravioleta/métodos , Infecciones Estafilocócicas/metabolismo
16.
Biochem J ; 432(2): 275-82, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20860551

RESUMEN

To produce functional Hb (haemoglobin), nascent α-globin (αo) and ß-globin (ßo) chains must each bind a single haem molecule (to form αh and ßh) and interact together to form heterodimers. The precise sequence of binding events is unknown, and it has been suggested that additional factors might enhance the efficiency of Hb folding. AHSP (α-haemoglobin-stabilizing protein) has been shown previously to bind αh and regulate redox activity of the haem iron. In the present study, we used a combination of classical and dynamic light scattering and NMR spectroscopy to demonstrate that AHSP forms a heterodimeric complex with αo that inhibits αo aggregation and promotes αo folding in the absence of haem. These findings indicate that AHSP may function as an αo-specific chaperone, and suggest an important role for αo in guiding Hb assembly by stabilizing ßo and inhibiting off-pathway self-association of ßh.


Asunto(s)
Apoproteínas/química , Proteínas Sanguíneas/metabolismo , Hemoglobinas/química , Chaperonas Moleculares/metabolismo , Fragmentos de Péptidos/química , Dicroismo Circular , Dimerización , Estabilidad de Medicamentos , Hemoglobina A/química , Hemoglobina A/metabolismo , Humanos , Modelos Moleculares , Desnaturalización Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Dispersión de Radiación , Solubilidad , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...