RESUMEN
OBJECTIVE: We propose an efficient approach based on a convolutional denoising autoencoder (CDA) network to reduce motion and noise artifacts (MNA) from corrupted atrial fibrillation (AF) and non-AF photoplethysmography (PPG) data segments so that an accurate PPG-signal-derived heart rate can be obtained. Our method's main innovation is the optimization of the CDA performance for both rhythms using more AF than non-AF data for training the AF-specific CDA model and vice versa for the non-AF CDA network. METHODS: To evaluate this unconventional training scheme, our proposed network was trained and tested on 25-sec PPG data segments from 48 subjects from two different databases-the Pulsewatch dataset and Stanford University's publicly available PPG dataset. In total, our dataset contains 10,773 data segments: 7,001 segments for training and 3,772 independent segments from out-of-sample subjects for testing. RESULTS: Using real-life corrupted PPG segments, our approach significantly reduced the average heart rate root mean square error (RMSE) of the reconstructed PPG segments by 45.74% and 23% compared to the corrupted non-AF and AF data, respectively. Further, our approach exhibited lower RMSE, and higher sensitivity and PPV for detected peaks compared to the reconstructed data produced by the alternative methods. CONCLUSION: These results show the promise of our approach as a reliable denoising method, which should be used prior to AF detection algorithms for an accurate cardiac health monitoring involving wearable devices. SIGNIFICANCE: PPG signals collected from wearables are vulnerable to MNA, which limits their use as a reliable measurement, particularly in uncontrolled real-life environments.
Asunto(s)
Fibrilación Atrial , Fotopletismografía , Humanos , Fotopletismografía/métodos , Fibrilación Atrial/diagnóstico , Frecuencia Cardíaca/fisiología , Monitoreo Fisiológico , Movimiento (Física) , Algoritmos , Procesamiento de Señales Asistido por Computador , ArtefactosRESUMEN
BACKGROUND: The prevalence of atrial fibrillation (AF) increases with age and can lead to stroke. Therefore, older adults may benefit the most from AF screening. However, older adult populations tend to lag more than younger groups in the adoption of, and comfort with, the use of mobile health (mHealth) apps. Furthermore, although mobile apps that can detect AF are available to the public, most are designed for intermittent AF detection and for younger users. No app designed for long-term AF monitoring has released detailed system design specifications that can handle large data collections, especially in this age group. OBJECTIVE: This study aimed to design an innovative smartwatch-based AF monitoring mHealth solution in collaboration with older adult participants and clinicians. METHODS: The Pulsewatch system is designed to link smartwatches and smartphone apps, a website for data verification, and user data organization on a cloud server. The smartwatch in the Pulsewatch system is designed to continuously monitor the pulse rate with embedded AF detection algorithms, and the smartphone in the Pulsewatch system is designed to serve as the data-transferring hub to the cloud storage server. RESULTS: We implemented the Pulsewatch system based on the functionality that patients and caregivers recommended. The user interfaces of the smartwatch and smartphone apps were specifically designed for older adults at risk for AF. We improved our Pulsewatch system based on feedback from focus groups consisting of patients with stroke and clinicians. The Pulsewatch system was used by the intervention group for up to 6 weeks in the 2 phases of our randomized clinical trial. At the conclusion of phase 1, 90 trial participants who had used the Pulsewatch app and smartwatch for 14 days completed a System Usability Scale to assess the usability of the Pulsewatch system; of 88 participants, 56 (64%) endorsed that the smartwatch app is "easy to use." For phases 1 and 2 of the study, we collected 9224.4 hours of smartwatch recordings from the participants. The longest recording streak in phase 2 was 21 days of consecutive recordings out of the 30 days of data collection. CONCLUSIONS: This is one of the first studies to provide a detailed design for a smartphone-smartwatch dyad for ambulatory AF monitoring. In this paper, we report on the system's usability and opportunities to increase the acceptability of mHealth solutions among older patients with cognitive impairment. TRIAL REGISTRATION: ClinicalTrials.gov NCT03761394; https://www.clinicaltrials.gov/ct2/show/NCT03761394. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1016/j.cvdhj.2021.07.002.
RESUMEN
OBJECTIVE: With the increasing use of wearable healthcare devices for remote patient monitoring, reliable signal quality assessment (SQA) is required to ensure the high accuracy of interpretation and diagnosis on the recorded data from patients. Photoplethysmographic (PPG) signals non-invasively measured by wearable devices are extensively used to provide information about the cardiovascular system and its associated diseases. In this study, we propose an approach to optimize the quality assessment of the PPG signals. METHODS: We used an ensemble-based feature selection scheme to enhance the prediction performance of the classification model to assess the quality of the PPG signals. Our approach for feature and subset size selection yielded the best-suited feature subset, which was optimized to differentiate between the clean and artifact corrupted PPG segments. CONCLUSION: A high discriminatory power was achieved between two classes on the test data by the proposed feature selection approach, which led to strong performance on all dependent and independent test datasets. We achieved accuracy, sensitivity, and specificity rates of higher than 0.93, 0.89, and 0.97, respectively, for dependent test datasets, independent of heartbeat type, i.e., atrial fibrillation (AF) or non-AF data including normal sinus rhythm (NSR), premature atrial contraction (PAC), and premature ventricular contraction (PVC). For independent test datasets, accuracy, sensitivity, and specificity rates were greater than 0.93, 0.89, and 0.97, respectively, on PPG data recorded from AF and non-AF subjects. These results were found to be more accurate than those of all of the contemporary methods cited in this work. SIGNIFICANCE: As the results illustrate, the advantage of our proposed scheme is its robustness against dynamic variations in the PPG signal during long-term 14-day recordings accompanied with different types of physical activities and a diverse range of fluctuations and waveforms caused by different individual hemodynamic characteristics, and various types of recording devices. This robustness instills confidence in the application of the algorithm to various kinds of wearable devices as a reliable PPG signal quality assessment approach.
Asunto(s)
Fibrilación Atrial , Dispositivos Electrónicos Vestibles , Algoritmos , Artefactos , Electrocardiografía/métodos , Frecuencia Cardíaca , Humanos , Fotopletismografía/métodos , Procesamiento de Señales Asistido por ComputadorRESUMEN
OBJECTIVE: We have developed a peak detection algorithm for accurate determination of heart rate, using photoplethysmographic (PPG) signals from a smartwatch, even in the presence of various cardiac rhythms, including normal sinus rhythm (NSR), premature atrial contraction (PAC), premature ventricle contraction (PVC), and atrial fibrillation (AF). Given the clinical need for accurate heart rate estimation in patients with AF, we developed a novel approach that reduces heart rate estimation errors when compared to peak detection algorithms designed for NSR. METHODS: Our peak detection method is composed of a sequential series of algorithms that are combined to discriminate the various arrhythmias described above. Moreover, a novel Poincaré plot scheme is used to discriminate between basal heart rate AF and rapid ventricular response (RVR) AF, and to differentiate PAC/PVC from NSR and AF. Training of the algorithm was performed only with Samsung Simband smartwatch data, whereas independent testing data which had more samples than did the training data were obtained from Samsung's Gear S3 and Galaxy Watch 3. RESULTS: The new PPG peak detection algorithm provides significantly lower average heart rate and interbeat interval beat-to-beat estimation errors-30% and 66% lower-and mean heart rate and mean interbeat interval estimation errors-60% and 77% lower-when compared to the best of the seven other traditional peak detection algorithms that are known to be accurate for NSR. Our new PPG peak detection algorithm was the overall best performers for other arrhythmias. CONCLUSION: The proposed method for PPG peak detection automatically detects and discriminates between various arrhythmias among different waveforms of PPG data, delivers significantly lower heart rate estimation errors for participants with AF, and reduces the number of false negative peaks. SIGNIFICANCE: By enabling accurate determination of heart rate despite the presence of AF with rapid ventricular response or PAC/PVCs, we enable clinicians to make more accurate recommendations for heart rate control from PPG data.
Asunto(s)
Fibrilación Atrial , Complejos Prematuros Ventriculares , Algoritmos , Fibrilación Atrial/diagnóstico , Electrocardiografía , Frecuencia Cardíaca/fisiología , Humanos , Fotopletismografía/métodos , Complejos Prematuros Ventriculares/diagnósticoRESUMEN
Background: Atrial fibrillation (AF) is a common heart rhythm disorder that elevates stroke risk. Stroke survivors undergo routine heart rhythm monitoring for AF. Smartwatches are capable of AF detection and potentially can replace traditional cardiac monitoring in stroke patients. Objective: The goal of Pulsewatch is to assess the accuracy, usability, and adherence of a smartwatch-based AF detection system in stroke patients. Methods: The study will consist of two parts. Part I will have 6 focus groups with stroke patients, caretakers, and physicians, and a Hack-a-thon, to inform development of the Pulsewatch system. Part II is a randomized clinical trial with 2 phases designed to assess the accuracy and usability in the first phase (14 days) and adherence in the second phase (30 days). Participants will be randomized in a 3:1 ratio (intervention to control) for the first phase, and both arms will receive gold-standard electrocardiographic (ECG) monitoring. The intervention group additionally will receive a smartphone/smartwatch dyad with the Pulsewatch applications. Upon completion of 14 days, participants will be re-randomized in a 1:1 ratio. The intervention group will receive the Pulsewatch system and a handheld ECG device, while the control group will be passively monitored. Participants will complete questionnaires at enrollment and at 14- and 44-day follow-up visits to assess various psychosocial measures and health behaviors. Results: Part I was completed in August 2019. Enrollment for Part II began September 2019, with expected completion by the end of 2021. Conclusion: Pulsewatch aims to demonstrate that a smartwatch can be accurate for real-time AF detection, and that older stroke patients will find the system usable and will adhere to monitoring.