Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 17(10): e1009969, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34614006

RESUMEN

The pathology associated with malaria infection is largely due to the ability of infected human RBCs to adhere to a number of receptors on endothelial cells within tissues and organs. This phenomenon is driven by the export of parasite-encoded proteins to the host cell, the exact function of many of which is still unknown. Here we inactivate the function of one of these exported proteins, PFA66, a member of the J-domain protein family. Although parasites lacking this protein were still able to grow in cell culture, we observed severe defects in normal host cell modification, including aberrant morphology of surface knobs, disrupted presentation of the cytoadherence molecule PfEMP1, and a total lack of cytoadherence, despite the presence of the knob associated protein KAHRP. Complementation assays demonstrate that an intact J-domain is required for recovery to a wild-type phenotype and suggest that PFA66 functions in concert with a HSP70 to carry out host cell modification. Strikingly, this HSP70 is likely to be of host origin. ATPase assays on recombinant protein verify a functional interaction between PFA66 and residual host cell HSP70. Taken together, our data reveal a role for PFA66 in host cell modification, strongly implicate human HSP70s as being essential in this process and uncover a new KAHRP-independent molecular factor required for correct knob biogenesis.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Interacciones Huésped-Parásitos/fisiología , Malaria Falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/patología , Plasmodium falciparum/metabolismo , Virulencia
2.
Cell Microbiol ; 19(5)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27892646

RESUMEN

Having entered the mature human erythrocyte, the malaria parasite survives and propagates within a parasitophorous vacuole, a membrane-bound compartment separating the parasite from the host cell cytosol. The bounding membrane of this vacuole, referred to as the parasitophorous vacuolar membrane (PVM), contains parasite-encoded proteins, but how these membrane proteins are trafficked to the PVM remains unknown. Here, we have studied the trafficking of PfExp1 to the PVM. We find that trafficking of PfExp1 to the PVM is independent of the folding state of the protein and also continues unabated upon inactivation of the PVM translocon Plasmodium Translocon of Exported proteins (PTEX). Our data strongly suggest that the trafficking of membrane proteins to the PVM occurs by as yet unknown mechanism, potentially unique to Plasmodium.


Asunto(s)
Antígenos de Protozoos/metabolismo , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Canales de Translocación SEC/metabolismo , Vacuolas/metabolismo , Células Cultivadas , Eritrocitos/parasitología , Humanos , Pliegue de Proteína , Transporte de Proteínas , Vacuolas/parasitología
3.
Front Mol Biosci ; 2: 34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26167469

RESUMEN

The human malaria parasite, Plasmodium falciparum, encodes a minimal complement of six heat shock protein 70s (PfHSP70s), some of which are highly expressed and are thought to play an important role in the survival and pathology of the parasite. In addition to canonical features of molecular chaperones, these HSP70s possess properties that reflect functional adaptation to a parasitic life style, including resistance to thermal insult during fever periods and host-parasite interactions. The parasite even exports an HSP70 to the host cell where it is likely to be involved in host cell modification. This review focuses on the features of the PfHSP70s, particularly with respect to their adaptation to the malaria parasite life cycle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...