Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(14): e202303242, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38050774

RESUMEN

The chemical bioconjugation of proteins has seen tremendous applications in the past decades, with the booming of antibody-drug conjugates and their use in oncology. While genetic engineering has permitted to produce bespoke proteins featuring key (un-)natural amino acid residues poised for site-selective modifications, the conjugation of native proteins is riddled with selectivity issues. Chemoselective strategies are plentiful and enable the precise modification of virtually any residue with a reactive side-chain; site-selective methods are less common and usually most effective on small and medium-sized proteins. In this context, we studied the application of the Ugi multicomponent reaction for the site-selective conjugation of amine and carboxylate groups on proteins, and antibodies in particular. Through an in-depth mechanistic methodology work supported by peptide mapping studies, we managed to develop a set of conditions allowing the highly selective modification of antibodies bearing N-terminal glutamate and aspartate residues. We demonstrated that this strategy did not alter their affinity toward their target antigen and produced an antibody-drug conjugate with subnanomolar potency. Excitingly, we showed that the high site selectivity of our strategy was maintained on other protein formats, especially on anticalins, for which directed mutagenesis helped to highlight the key importance of a single lysine residue.


Asunto(s)
Inmunoconjugados , Proteínas , Proteínas/química , Lisina/química , Aminoácidos , Anticuerpos , Fenómenos Químicos
2.
Anal Bioanal Chem ; 416(2): 519-532, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38008785

RESUMEN

Antibody-drug conjugates (ADCs) are highly complex proteins mainly due to the structural microvariability of the mAb, along with the additional heterogeneity afforded by the bioconjugation process. Top-down (TD) and middle-down (MD) strategies allow the straightforward fragmentation of proteins to elucidate the conjugated amino acid residues. Nevertheless, these spectra are very crowded with multiple overlapping and unassigned ion fragments. Here we report on the use of dedicated software (ClipsMS) and application of proton transfer charge reduction (PTCR), to respectively expand the fragment ion search space to internal fragments and improve the separation of overlapping fragment ions for a more comprehensive characterization of a recently approved ADC, trastuzumab deruxtecan (T-DXd). Subunit fragmentation allowed between 70 and 90% of sequence coverage to be obtained. Upon addition of internal fragment assignment, the three subunits were fully sequenced, although internal fragments did not contribute significantly to the localization of the payloads. Finally, the use of PTCR after subunit fragmentation provided a moderate sequence coverage increase between 2 and 13%. The reaction efficiently decluttered the fragmentation spectra allowing increasing the number of fragment ions characteristic of the conjugation site by 1.5- to 2.5-fold. Altogether, these results show the interest in the implementation of internal fragment ion searches and more particularly the use of PTCR reactions to increase the number of signature ions to elucidate the conjugation sites and enhance the overall sequence coverage of ADCs, making this approach particularly appealing for its implementation in R&D laboratories.


Asunto(s)
Inmunoconjugados , Protones , Flujo de Trabajo , Trastuzumab/química , Inmunoconjugados/química , Iones/química
3.
Sci Rep ; 13(1): 21875, 2023 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072852

RESUMEN

Pneumatic transportation systems (PTS) were recently proposed as a method to carry ready-for-injection diluted monoclonal antibodies (mAbs) from the pharmacy to the bedside of patients. This method reduces transportation time and improves the efficiency of drug distribution process. However, mAbs are highly sensitive molecules for which subtle alterations may lead to deleterious clinical effects. These alterations can be caused by various external factors such as temperature, pH, pressure, and mechanical forces that may occur during transportation. Hence, it is essential to ensure that the mAbs transported by PTS remain stable and active throughout the transportation process. This study aims to determine the safety profile of PTS to transport 11 routinely used mAbs in a clinical setting through assessment of critical quality attributes (CQA) and orthogonal analysis. Hence, we performed aggregation/degradation profiling, post-translational modifications identification using complementary mass spectrometry-based methods, along with visible and subvisible particle formation determination by light absorbance and light obscuration analysis. Altogether, these results highlight that PTS can be safely used for this purpose when air is removed from the bags during preparation.


Asunto(s)
Anticuerpos Monoclonales , Farmacia , Humanos , Anticuerpos Monoclonales/química , Fenómenos Mecánicos , Transportes/métodos
4.
Molecules ; 28(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36985827

RESUMEN

In the quest to market increasingly safer and more potent biotherapeutic proteins, the concept of the multi-attribute method (MAM) has emerged from biopharmaceutical companies to boost the quality-by-design process development. MAM strategies rely on state-of-the-art analytical workflows based on liquid chromatography coupled to mass spectrometry (LC-MS) to identify and quantify a selected series of critical quality attributes (CQA) in a single assay. Here, we aimed at evaluating the repeatability and robustness of a benchtop LC-MS platform along with bioinformatics data treatment pipelines for peptide mapping-based MAM studies using standardized LC-MS methods, with the objective to benchmark MAM methods across laboratories, taking nivolumab as a case study. Our results evidence strong interlaboratory consistency across LC-MS platforms for all CQAs (i.e., deamidation, oxidation, lysine clipping and glycosylation). In addition, our work uniquely highlights the crucial role of bioinformatics postprocessing in MAM studies, especially for low-abundant species quantification. Altogether, we believe that MAM has fostered the development of routine, robust, easy-to-use LC-MS platforms for high-throughput determination of major CQAs in a regulated environment.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Monoclonales/química , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Glicosilación , Mapeo Peptídico/métodos
5.
Front Biosci (Landmark Ed) ; 27(10): 290, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36336868

RESUMEN

BACKGROUND: Native mass spectrometry (nMS) approaches appear attractive to complement bottom-up strategies traditionally used in biopharmaceutical industries thanks to their quite straightforward and rapid workflows, especially through online hyphenation of non-denaturing liquid chromatography (LC) to nMS. The present work provides an overview of the state-of-the-art chromatographic tools available for the detailed characterization of monoclonal antibody (mAb) formats, exemplified on the antibody-drug conjugate (ADC) trastuzumab deruxtecan (T-DXd). METHODS: T-DXd was first characterized by conventional reversed phase LC (rpLC) and peptide mapping. Couplings of size exclusion chromatography (SEC), cation exchange chromatography (CEX), and hydrophobic interaction chromatography (HIC) to nMS were used to gain further insights into size, hydrophobic, and charge variants of T-DXd and its parental mAb trastuzumab, at intact and middle-up levels. RESULTS: SEC-nMS first offered a direct snapshot of the homogeneous conjugation of T-DXd, with an average drug-to-antibody ratio (DAR) of 8 in agreement with a conjugation on cysteines after reduction of all interchain disulfide bonds. Moreover, SEC-nMS afforded precise identification and quantification of aggregates and fragments. Middle-up level experiments performed after IdeS digestion confirmed that drug conjugation occurs in the Fab region of the mAb, as seen with rpLC. HIC separated two DAR8 species that could not be differentiated by nMS. Although middle-up HIC-nMS proved to be more informative for oxidized forms, the identification of minor variants was still difficult because of poor MS signal quality, showing how the coupling of HIC to nMS remains challenging. Lastly, middle-up CEX-nMS provided accurate determination and localization of post-translational modifications, with several acidic/basic variants within Fab and Fc regions of T-DXd that were also identified by peptide mapping. CONCLUSIONS: This study illustrates the strengths and drawbacks of each LC-nMS coupling. By combining SEC-, HIC-, and CEX-nMS, we were able to achieve a comprehensive characterization of T-DXd without extensive sample preparation prior to MS analysis.


Asunto(s)
Inmunoconjugados , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Inmunoconjugados/análisis , Inmunoconjugados/química , Trastuzumab , Anticuerpos Monoclonales/química
6.
Nanomaterials (Basel) ; 12(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35564134

RESUMEN

Synthetic amorphous silica (SAS) is a nanomaterial used in a wide variety of applications, including the use as a food additive. Two types of SAS are commonly employed as a powder additive, precipitated silica and fumed silica. Numerous studies have investigated the effects of synthetic amorphous silica on mammalian cells. However, most of them have used an exposure scheme based on a single dose of SAS. In this study, we have used instead a repeated 10-day exposure scheme in an effort to better simulate the occupational exposure encountered in daily life by consumers and workers. As a biological model, we have used the murine macrophage cell line J774A.1, as macrophages are very important innate immune cells in the response to particulate materials. In order to obtain a better appraisal of the macrophage responses to this repeated exposure to SAS, we have used proteomics as a wide-scale approach. Furthermore, some of the biological pathways detected as modulated by the exposure to SAS by the proteomic experiments have been validated through targeted experiments. Overall, proteomics showed that precipitated SAS induced a more important macrophage response than fumed SAS at equal dose. Nevertheless, validation experiments showed that most of the responses detected by proteomics are indeed adaptive, as the cellular homeostasis appeared to be maintained at the end of the exposure. For example, the intracellular glutathione levels or the mitochondrial transmembrane potential at the end of the 10 days exposure were similar for SAS-exposed cells and for unexposed cells. Similarly, no gross lysosomal damage was observed after repeated exposure to SAS. Nevertheless, important functions of macrophages such as phagocytosis, TNFα, and interleukin-6 secretion were up-modulated after exposure, as was the expression of important membrane proteins such as the scavenger receptors, MHC-II, or the MAC-1 receptor. These results suggest that repeated exposure to low doses of SAS slightly modulates the immune functions of macrophages, which may alter the homeostasis of the immune system.

7.
J Proteomics ; 250: 104389, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34601154

RESUMEN

Some carboxydotrophs like Rhodospirillum rubrum are able to grow with CO as their sole source of energy using a Carbone monoxide dehydrogenase (CODH) and an Energy conserving hydrogenase (ECH) to perform anaerobically the so called water-gas shift reaction (WGSR) (CO + H2O → CO2 + H2). Several studies have focused at the biochemical and biophysical level on this enzymatic system and a few OMICS studies on CO metabolism. Knowing that CO is toxic in particular due to its binding to heme iron atoms, and is even considered as a potential antibacterial agent, we decided to use a proteomic approach in order to analyze R. rubrum adaptation in term of metabolism and management of the toxic effect. In particular, this study allowed highlighting a set of proteins likely implicated in ECH maturation, and important perturbations in term of cofactor biosynthesis, especially metallic cofactors. This shows that even this CO tolerant microorganism cannot avoid completely CO toxic effects associated with its interaction with metallic ions. SIGNIFICANCE: This proteomic study highlights the fact that even in a microorganism able to handle carbon monoxide and in some way detoxifying it via the intrinsic action of the carbon monoxide dehydrogenase (CODH), CO has important effects on metal homeostasis, metal cofactors and metalloproteins. These effects are direct or indirect via transcription regulation, and amplified by the high interdependency of cofactors biosynthesis.


Asunto(s)
Hidrogenasas , Rhodospirillum rubrum , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacología , Hidrogenasas/metabolismo , Hidrogenasas/farmacología , Proteómica , Rhodospirillum rubrum/metabolismo
8.
J Am Soc Mass Spectrom ; 32(10): 2505-2512, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34437803

RESUMEN

Monoclonal antibodies (mAbs) have taken on an increasing importance for the treatment of various diseases, including cancers and immunological disorders. Disulfide bonds play a pivotal role in therapeutic antibody structure and activity relationships. Disulfide connectivity and cysteine-related variants are considered as critical quality attributes that must be monitored during mAb manufacturing and storage, as non-native disulfide bridges and aggregates might be responsible for loss of biological function and immunogenicity. The presence of cysteine residues in the complementarity-determining regions (CDRs) is rare in human antibodies but may be critical for the antigen-binding or deleterious for therapeutic antibody development. Consequently, in-depth characterization of their disulfide network is a prerequisite for mAb developability assessment. Mass spectrometry (MS) techniques represent powerful tools for accurate identification of disulfide connectivity. We report here on the MS-based characterization of an IgG4 comprising two additional cysteine residues in the CDR of its light chain. Classical bottom-up approaches after trypsin digestion first allowed identification of a dipeptide containing two disulfide bridges. To further investigate the conformational heterogeneity of the disulfide-bridged dipeptide, we performed ion mobility spectrometry-mass spectrometry (IMS-MS) experiments. Our results highlight benefits of high resolution IMS-MS to tackle the conformational landscape of disulfide peptides generated after trypsin digestion of a humanized IgG4 mAb under development. By comparing arrival time distributions of the mAb-collected and synthetic peptides, cyclic IMS afforded unambiguous assessment of disulfide bonds. In addition to classical peptide mapping, qualitative high-resolution IMS-MS can be of great interest to identify disulfide bonds within therapeutic mAbs.


Asunto(s)
Anticuerpos Monoclonales/química , Regiones Determinantes de Complementariedad/química , Disulfuros , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Disulfuros/análisis , Disulfuros/química , Humanos , Inmunoglobulina G/química
9.
PLoS One ; 16(5): e0252450, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34048472

RESUMEN

Except cells circulating in the bloodstream, most cells in vertebrates are adherent. Studying the repercussions of adherence per se in cell physiology is thus very difficult to carry out, although it plays an important role in cancer biology, e.g. in the metastasis process. In order to study how adherence impacts major cell functions, we used a murine macrophage cell line. Opposite to the monocyte/macrophage system, where adherence is associated with the acquisition of differentiated functions, these cells can be grown in both adherent or suspension conditions without altering their differentiated functions (phagocytosis and inflammation signaling). We used a proteomic approach to cover a large panel of proteins potentially modified by the adherence status. Targeted experiments were carried out to validate the proteomic results, e.g. on metabolic enzymes, mitochondrial and cytoskeletal proteins. The mitochondrial activity was increased in non-adherent cells compared with adherent cells, without differences in glucose consumption. Concerning the cytoskeleton, a rearrangement of the actin organization (filopodia vs sub-cortical network) and of the microtubule network were observed between adherent and non-adherent cells. Taken together, these data show the mechanisms at play for the modification of the cytoskeleton and also modifications of the metabolic activity between adherent and non-adherent cells.


Asunto(s)
Adhesión Celular/fisiología , Proteómica/métodos , Animales , Ciclo Celular , Citoesqueleto/metabolismo , Electroforesis en Gel Bidimensional , Hexoquinasa/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Óxido Nítrico/metabolismo , Fagocitosis , Células RAW 264.7
10.
J Proteomics ; 239: 104178, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33662612

RESUMEN

Copper is an essential metal for life, but is toxic at high concentrations. In mammalian cells, two copper transporters are known, CTR1 and CTR2. In order to gain insights on the possible influence of the import pathway on cellular responses to copper, two copper challenges were compared: one with copper ion, which is likely to use preferentially CTR1, and one with a copper-polyacrylate complex, which will be internalized via the endosomal pathway and is likely to use preferentially CTR2. A model system consisting in the J774A1 mouse macrophage system, with a strong endosomal/lysosomal pathway, was used. In order to gain wide insights into the cellular responses to copper, a proteomic approach was used. The proteomic results were validated by targeted experiments, and showed differential effects of the import mode on cellular physiology parameters. While the mitochondrial transmembrane potential was kept constant, a depletion in the free glutahione content was observed with copper (ion and polylacrylate complex). Both copper-polyacrylate and polyacrylate induced perturbations in the cytoskeleton and in phagocytosis. Inflammatory responses were also differently altered by copper ion and copper-polyacrylate. Copper-polyacrylate also perturbed several metabolic enzymes. Lastly, enzymes were used as a test set to assess the predictive value of proteomics. SIGNIFICANCE: Proteomic profiling provides an in depth analysis of the alterations induced on cells by copper under two different exposure modes to this metal, namely as the free ion or as a complex with polyacrylate. The cellular responses were substantially different between the two exposure modes, although some cellular effects are shared, such as the depletion in free glutathione. Targeted experiments were used to confirm the proteomic results. Some metabolic enzymes showed altered activities after exposure to the copper-polyacrylate complex. The basal inflammatory responses were different for copper ion and for the copper-polyacrylate complex, while the two forms of copper inhibited lipopolysaccharide-induced inflammatory responses.


Asunto(s)
Proteínas de Transporte de Catión , Cobre , Animales , Cobre/metabolismo , Cobre/farmacología , Glutatión/metabolismo , Macrófagos/metabolismo , Ratones , Proteómica
11.
Nanomaterials (Basel) ; 10(10)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003391

RESUMEN

Synthetic amorphous silica is one of the most used nanomaterials, and numerous toxicological studies have studied its effects. Most of these studies have used an acute exposure mode to investigate the effects immediately after exposure. However, this exposure modality does not allow the investigation of the persistence of the effects, which is a crucial aspect of silica toxicology, as exemplified by crystalline silica. In this paper, we extended the investigations by studying not only the responses immediately after exposure but also after a 72 h post-exposure recovery phase. We used a pyrolytic silica as the test nanomaterial, as this variant of synthetic amorphous silica has been shown to induce a more persistent inflammation in vivo than precipitated silica. To investigate macrophage responses to pyrolytic silica, we used a combination of proteomics and targeted experiments, which allowed us to show that most of the cellular functions that were altered immediately after exposure to pyrolytic silica at a subtoxic dose, such as energy metabolism and cell morphology, returned to normal at the end of the recovery period. However, some alterations, such as the inflammatory responses and some aldehyde detoxification proteins, were persistent. At the proteomic level, other alterations, such as proteins implicated in the endosomal/lysosomal pathway, were also persistent but resulted in normal function, thus suggesting cellular adaptation.

12.
Proteomes ; 7(2)2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31238524

RESUMEN

Metal-containing drugs have long been used in anticancer therapies. The mechansims of action of platinum-based drugs are now well-understood, which cannot be said of drugs containing other metals, such as gold or copper. To gain further insights into such mechanisms, we used a classical proteomic approach based on two-dimensional elelctrophoresis to investigate the mechanisms of action of a hydroxyquinoline-copper complex, which shows promising anticancer activities, using the leukemic cell line RAW264.7 as the biological target. Pathway analysis of the modulated proteins highlighted changes in the ubiquitin/proteasome pathway, the mitochondrion, the cell adhesion-cytoskeleton pathway, and carbon metabolism or oxido-reduction. In line with these prteomic-derived hypotheses, targeted validation experiments showed that the hydroxyquinoline-copper complex induces a massive reduction in free glutathione and a strong alteration in the actin cytoskeleton, suggesting a multi-target action of the hydroxyquinoline-copper complex on cancer cells.

13.
PLoS One ; 13(12): e0208979, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30550596

RESUMEN

LIM kinases are located at a strategic crossroad, downstream of several signaling pathways and upstream of effectors such as microtubules and the actin cytoskeleton. Cofilin is the only LIM kinases substrate that is well described to date, and its phosphorylation on serine 3 by LIM kinases controls cofilin actin-severing activity. Consequently, LIM kinases inhibition leads to actin cytoskeleton disorganization and blockade of cell motility, which makes this strategy attractive in anticancer treatments. LIMK has also been reported to be involved in pathways that are deregulated in hematologic malignancies, with little information regarding cofilin phosphorylation status. We have used proteomic approaches to investigate quantitatively and in detail the phosphorylation status of cofilin in myeloid tumor cell lines of murine and human origin. Our results show that under standard conditions, only a small fraction (10 to 30% depending on the cell line) of cofilin is phosphorylated (including serine 3 phosphorylation). In addition, after a pharmacological inhibition of LIM kinases, a residual cofilin phosphorylation is observed on serine 3. Interestingly, this 2D gel based proteomic study identified new phosphorylation sites on cofilin, such as threonine 63, tyrosine 82 and serine 108.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Carbazoles/farmacología , Quinasas Lim/antagonistas & inhibidores , Células Mieloides/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteómica , Factores Despolimerizantes de la Actina/química , Actinas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular , Humanos , Células Mieloides/efectos de los fármacos , Fosforilación/efectos de los fármacos
14.
Anal Chem ; 90(23): 13929-13937, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30371058

RESUMEN

The determination of size variants is a major critical quality attribute of a therapeutic monoclonal antibody (mAb that may affect the drug product safety, potency, and efficacy. Size variant characterization often relies on size-exclusion chromatography (SEC), which could be hampered by difficult identification of peaks. On the other hand, mass spectrometry (MS)-based techniques performed in nondenaturing conditions have proven to be valuable for mAb-related compound characterization. On the basis of the observation that limited SEC performance was observed in nondenaturing MS compatible ammonium acetate buffer compared with classical phosphate salts, a multidimensional analytical approach was proposed. It combines comprehensive online two-dimensional chromatography (SEC×SEC), with ion mobility and mass spectrometry (IM-MS) in nondenaturing conditions for the characterization of a variety of mAbs. We first exemplify the versatility of our approach for simultaneous detection, identification, and quantitation of adalimumab size variants. Benefits of the SEC×SEC-native IM×MS were further highlighted on forced degraded pembrolizumab and bevacizumab samples, for which the 4D setup was mandatory to obtain an extensive and unambiguous identification, and accurate quantitation of unexpected high/low molecular weight species (HMWS and LMWS). In this specific context, monomeric conformers were detected by IM-MS as HMWS or LMWS. Altogether, our results emphasize the power of comprehensive 2D LC×LC setups hyphenated to IM×MS in nondenaturing conditions with unprecedented performance including: (i) maintaining optimal SEC performance (under classical nonvolatile salt conditions), (ii) performing online native MS identification, and (iii) providing IM-MS conformational characterization of all separated size variants.


Asunto(s)
Anticuerpos Monoclonales Humanizados/análisis , Anticuerpos Monoclonales/análisis , Antineoplásicos Inmunológicos/análisis , Bevacizumab/análisis , Cromatografía en Gel , Espectrometría de Masas
15.
J Hepatol ; 69(5): 1099-1109, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29981427

RESUMEN

BACKGROUND & AIMS: Embedded into a complex signaling network that coordinates glucose uptake, usage and production, the nuclear bile acid receptor FXR is expressed in several glucose-processing organs including the liver. Hepatic gluconeogenesis is controlled through allosteric regulation of gluconeogenic enzymes and by glucagon/cAMP-dependent transcriptional regulatory pathways. We aimed to elucidate the role of FXR in the regulation of fasting hepatic gluconeogenesis. METHODS: The role of FXR in hepatic gluconeogenesis was assessed in vivo and in mouse primary hepatocytes. Gene expression patterns in response to glucagon and FXR agonists were characterized by quantitative reverse transcription PCR and microarray analysis. FXR phosphorylation by protein kinase A was determined by mass spectrometry. The interaction of FOXA2 with FXR was identified by cistromic approaches and in vitro protein-protein interaction assays. The functional impact of the crosstalk between FXR, the PKA and FOXA2 signaling pathways was assessed by site-directed mutagenesis, transactivation assays and restoration of FXR expression in FXR-deficient hepatocytes in which gene expression and glucose production were assessed. RESULTS: FXR positively regulates hepatic glucose production through two regulatory arms, the first one involving protein kinase A-mediated phosphorylation of FXR, which allowed for the synergistic activation of gluconeogenic genes by glucagon, agonist-activated FXR and CREB. The second arm involves the inhibition of FXR's ability to induce the anti-gluconeogenic nuclear receptor SHP by the glucagon-activated FOXA2 transcription factor, which physically interacts with FXR. Additionally, knockdown of Foxa2 did not alter glucagon-induced and FXR agonist enhanced expression of gluconeogenic genes, suggesting that the PKA and FOXA2 pathways regulate distinct subsets of FXR responsive genes. CONCLUSIONS: Thus, hepatic glucose production is regulated during physiological fasting by FXR, which integrates the glucagon/cAMP signal and the FOXA2 signal, by being post-translationally modified, and by engaging in protein-protein interactions, respectively. LAY SUMMARY: Activation of the nuclear bile acid receptor FXR regulates gene expression networks, controlling lipid, cholesterol and glucose metabolism, which are mostly effective after eating. Whether FXR exerts critical functions during fasting is unknown. The results of this study show that FXR transcriptional activity is regulated by the glucagon/protein kinase A and the FOXA2 signaling pathways, which act on FXR through phosphorylation and protein-protein interactions, respectively, to increase hepatic glucose synthesis.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Ayuno/metabolismo , Gluconeogénesis , Factor Nuclear 3-beta del Hepatocito/fisiología , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Animales , Regulación de la Expresión Génica , Glucagón/fisiología , Glucosa/metabolismo , Hepatocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación
16.
Nanoscale ; 9(27): 9641-9658, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28671223

RESUMEN

The technological and economic benefits of engineered nanomaterials may be offset by their adverse effects on living organisms. One of the highly produced nanomaterials under such scrutiny is amorphous silica nanoparticles, which are known to have an appreciable, although reversible, inflammatory potential. This is due to their selective toxicity toward macrophages, and it is thus important to study the cellular responses of this cell type to silica nanoparticles to better understand the direct or indirect adverse effects of nanosilica. We have here studied the responses of the RAW264.7 murine macrophage cells and of the control MPC11 plasma cells to subtoxic concentrations of nanosilica, using a combination of proteomic and targeted approaches. This allowed us to document alterations in the cellular cytoskeleton, in the phagocytic capacity of the cells as well as their ability to respond to bacterial stimuli. More surprisingly, silica nanoparticles also induce a greater sensitivity of macrophages to DNA alkylating agents, such as styrene oxide, even at doses which do not induce any appreciable cell death.

17.
Proteomics ; 16(22): 2864-2877, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27723244

RESUMEN

The physiology of cells cultured in vitro depends obviously on the external conditions, including the nutrients present in the culture medium. In order to test the influence of this parameter, J774 macrophages grown either in RPMI or in DMEM were compared by a combination of targeted analyses and a proteomic approach. The two media differ in their glucose, amino acids, and vitamins concentrations, but there were no significant differences in the cell cycle or in the percentage of phagocytic cells in both media, although the phagocytic capacity (i.e. the number of phagocytized particles) was higher in DMEM. Conversely, we found that J774 cells grown in RPMI produced more nitric oxide in response to lipopolysaccharide. The proteomic study highlighted differences affecting the central metabolism and nucleotide metabolism, cytoskeleton, protein degradation, and cell signaling. Furthermore, proteomics showed that J774 cells grown in RPMI or in DMEM and exposed to copper oxide nanoparticles respond rather differently, with only a few proteins similarly modulated between cells grown in both media. Taken together, our results show that the basal state of cells grown in two different media is different, and this may affect the way they respond to an external stimulus or stress.


Asunto(s)
Cobre/metabolismo , Macrófagos/efectos de los fármacos , Nanopartículas/metabolismo , Proteoma/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Fagocitosis/efectos de los fármacos , Proteómica
18.
J Proteomics ; 134: 174-185, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26710724

RESUMEN

The cellular responses of the J774 macrophage cell line to zinc oxide and zirconium oxide nanoparticles have been studied by a comparative quantitative, protein level based proteomic approach. The most prominent results have been validated by targeted approaches. These approaches have been carried out under culture conditions that stimulate mildly the aryl hydrocarbon receptor, thereby mimicking conditions that can be encountered in vivo in complex environments. The comparative approach with two nanoparticles allows to separate the common responses, which can be attributed to the phagocytosis event per se, from the response specific to each type of nanoparticles. The zinc-specific responses are the most prominent ones and include mitochondrial proteins too, but also signaling molecules such as MyD88, proteins associated with methylglyoxal detoxification (glyoxalase 2, aldose reductase) and deoxyribonucleotide hydrolases. The in cellulo inhibition of GAPDH by zinc was also documented, representing a possible source of methylglyoxal in the cells, leading to an increase in methylglyoxal-modified DNA bases. These observations may be mechanistically associated with the genotoxic effect of zinc and its selective effects on cancer cells. BIOLOGICAL SIGNIFICANCE: The responses of the murine J774 macrophage cell lines to two types of metallic oxide nanoparticles (zinc oxide and zirconium dioxide) were studied by a comparative 2D gel based approach. This allows sorting of shared responses from nanoparticle-specific responses. Zinc oxide nanoparticles induced specifically a strong decrease in the mitochondrial function, in phagocytosis and also an increase in the methylglyoxal-associated DNA damage, which may explain the well known genotoxicity of zinc. In conclusion, this study allows highlighting of pathways that may play an important role in the toxicity of the zinc oxide nanoparticles.


Asunto(s)
Macrófagos/metabolismo , Nanopartículas/efectos adversos , Proteoma/metabolismo , Proteómica , Óxido de Zinc/efectos adversos , Animales , Línea Celular , Macrófagos/patología , Ratones , Nanopartículas/química , Óxido de Zinc/química , Óxido de Zinc/farmacología
19.
J Proteomics ; 134: 163-173, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26276045

RESUMEN

Although the biological effects of titanium dioxide nanoparticles (TiO2-NPs) have been studied for more than two decades, the mechanisms governing their toxicity are still unclear. We applied 2D-gel proteomics analysis on A549 epithelial alveolar cells chronically exposed for 2months to 2.5 or 50µg/mL of deeply characterized TiO2-NPs, in order to obtain comprehensive molecular responses that may reflect functional outcomes. We show that exposure to TiO2-NPs impacts the abundance of 30 protein species, corresponding to 22 gene products. These proteins are involved in glucose metabolism, trafficking, gene expression, mitochondrial function, proteasome activity and DNA damage response. Besides, our results suggest that p53 pathway is activated, slowing down cell cycle progression and reducing cell proliferation rate. Moreover, we report increased content of chaperones-related proteins, which suggests homeostasis re-establishment. Finally, our results highlight that chronic exposure to TiO2-NPs affects the same cellular functions as acute exposure to TiO2-NPs, although lower exposure concentrations and longer exposure times induce more intense cellular response. BIOLOGICAL SIGNIFICANCE: Our results make possible the identification of new mechanisms that explain TiO2-NP toxicity upon long-term, in vitro exposure of A549 cells. It is the first article describing -omics results obtained with this experimental strategy. We show that this long-term exposure modifies the cellular content of proteins involved in functions including mitochondrial activity, intra- and extracellular trafficking, proteasome activity, glucose metabolism, and gene expression. Moreover we observe modification of content of proteins that activate the p53 pathway, which suggest the induction of a DNA damage response. Technically, our results show that exposure of A549 cells to a high concentration of TiO2-NPs leads to the identification of modulations of the same functional categories than exposure to low, more realistic concentrations. Still the intensity differs between these two exposure scenarios. We also show that chronic exposure to TiO2-NPs induces the modulation of cellular functions that have already been reported in the literature as being impacted in acute exposure scenarios. This proves that the exposure protocol in in vitro experiments related to nanoparticle toxicology might be cautiously chosen since inappropriate scenario may lead to inappropriate and/or incomplete conclusions.


Asunto(s)
Células Epiteliales/metabolismo , Nanopartículas , Proteoma/metabolismo , Proteómica , Alveolos Pulmonares/metabolismo , Mucosa Respiratoria/metabolismo , Titanio/farmacología , Línea Celular Tumoral , Humanos , Titanio/química
20.
J Proteomics ; 135: 170-180, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26211718

RESUMEN

Microorganisms, such as bacteria, are one of the first targets of nanoparticles in the environment. In this study, we tested the effect of two nanoparticles, ZnO and TiO2, with the salt ZnSO4 as the control, on the Gram-positive bacterium Bacillus subtilis by 2D gel electrophoresis-based proteomics. Despite a significant effect on viability (LD50), TiO2 NPs had no detectable effect on the proteomic pattern, while ZnO NPs and ZnSO4 significantly modified B. subtilis metabolism. These results allowed us to conclude that the effects of ZnO observed in this work were mainly attributable to Zn dissolution in the culture media. Proteomic analysis highlighted twelve modulated proteins related to central metabolism: MetE and MccB (cysteine metabolism), OdhA, AspB, IolD, AnsB, PdhB and YtsJ (Krebs cycle) and XylA, YqjI, Drm and Tal (pentose phosphate pathway). Biochemical assays, such as free sulfhydryl, CoA-SH and malate dehydrogenase assays corroborated the observed central metabolism reorientation and showed that Zn stress induced oxidative stress, probably as a consequence of thiol chelation stress by Zn ions. The other patterns affected by ZnO and ZnSO4 were the stringent response and the general stress response. Nine proteins involved in or controlled by the stringent response showed a modified expression profile in the presence of ZnO NPs or ZnSO4: YwaC, SigH, YtxH, YtzB, TufA, RplJ, RpsB, PdhB and Mbl. An increase in the ppGpp concentration confirmed the involvement of the stringent response during a Zn stress. All these metabolic reorientations in response to Zn stress were probably the result of complex regulatory mechanisms including at least the stringent response via YwaC.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/biosíntesis , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Óxido de Zinc/farmacología , Bacillus subtilis/genética , Proteínas Bacterianas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA