Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38713419

RESUMEN

A multitude of approaches will be required to respond to the threat posed by the emergence and spread of antibiotic resistant pathogens. Bacteriocins have gained increasing attention as a possible alternative to antibiotics, as such peptide antimicrobials have mechanisms of action different from antibiotics and are therefore equally potent against antibiotic resistant bacteria as their susceptible counterparts. A group of bacteriocins known as saposin-like bacteriocins is believed to act directly on the bacterial membrane. Based on seven saposin-like leaderless bacteriocins, we have constructed a library of hybrid peptides containing all combinations of the N- and C-terminal halves of the native bacteriocins. All hybrid peptides were synthesized using in vitro protein expression and assayed for antimicrobial activity towards several pathogens. Of the 42 hybrid peptides, antimicrobial activity was confirmed for 11 novel hybrid peptides. Furthermore, several of the hybrid peptides exhibited altered antimicrobial spectra and apparent increase in potency compared to the peptides from which they were derived. The most promising hybrid, termed ISP26, was then obtained synthetically and shown to inhibit most of the Gram-positive species tested, including opportunistic pathogens and food spoilage bacteria. Additionally, ISP26 was shown to inhibit Acinetobacter, a species of Gram-negative bacteria frequently isolated from nosocomial infections. The activity of the hybrid library provides valuable insights into the design and screening of new active bacteriocins.

2.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38439668

RESUMEN

AIMS: Enterocins K1 and EJ97 have specific antimicrobial activity against Enterococcus faecium and Enterococcus faecalis, respectively. The aim of this study was to investigate the utility of these enterocins for in vivo treatment of systemic enterococcal infections. METHODS AND RESULTS: The antimicrobial effect in blood was analysed and compared against the effect in saline. Colony forming unit counts revealed that the enterocins killed all the bacteria within 1 hour. Additionally, the bactericidal effect against E. faecalis was more rapid in blood, indicating a possible synergy between EntEJ97 and blood. Importantly, no enterocin resistant mutants emerged in these experiments. Injecting the enterocins intraperitoneally in an in vivo mouse model and using fluorescence and minimum inhibitory concentration determination to estimate concentrations of the peptides in plasma, indicate that the enterocins exist in circulation in therapeutic concentrations. Alanine aminotransferase detection, and haemolysis analysis indicates that there is no detectable liver damage or haemolytic effect after injection. CONCLUSIONS: The study revealed that EntK1 and EntEJ97 are able to kill all bacteria ex vivo in the presence of blood. In vivo experiments determine that the enterocins exist in circulation in therapeutic concentrations without causing liver damage or haemolysis. Future experiments should test these peptides for treatment of infection in a relevant in vivo model.


Asunto(s)
Infecciones Bacterianas , Bacteriocinas , Enterococcus faecium , Enterococos Resistentes a la Vancomicina , Animales , Ratones , Bacteriocinas/farmacología , Hemólisis , Estudios de Factibilidad , Antibacterianos/farmacología , Péptidos/farmacología , Pruebas de Sensibilidad Microbiana
3.
Microbiol Spectr ; 11(6): e0086923, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37905822

RESUMEN

IMPORTANCE: Bacteria produce bacteriocins to inhibit growth of other bacterial species. We have studied the antimicrobial activity of a new bacteriocin produced by the skin bacterium S. haemolyticus. The bacteriocin is effective against several types of Gram-positive bacteria, including highly virulent and antibiotic-resistant strains such as Staphylococcus aureus and Enterococcus faecium. Effective antimicrobials are important for the treatment of infections and the success of major surgery and chemotherapy. Bacteriocins can be part of the solution to the global concern of antimicrobial resistance.


Asunto(s)
Antiinfecciosos , Bacteriocinas , Bacteriocinas/farmacología , Staphylococcus haemolyticus , Antibacterianos/farmacología , Organización Mundial de la Salud
4.
Sci Rep ; 13(1): 14361, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658186

RESUMEN

The present study describes a detailed procedure for expressing and purifying the integral membrane protein RseP using the pSIP system and Lactiplantibacillus plantarum as an expression host. RseP is a membrane-bound site-2-protease and a known antibacterial target in multiple human pathogens. In the present study, we screened five RseP orthologs from Gram-positive bacteria and found RseP from Enterococcus faecium (EfmRseP) to yield the highest protein levels. The production conditions were optimized and EfmRseP was purified by immobilized metal ion affinity chromatography followed by size-exclusion chromatography. The purification resulted in an overall yield of approximately 1 mg of pure protein per 3 g of wet-weight cell pellet. The structural integrity of the purified protein was confirmed using circular dichroism. We further assessed the expression and purification of RseP from E. faecium in the Gram-negative Escherichia coli. Detection of soluble protein failed in two of the three E. coli strains tested. Purification of EfmRseP expressed in E. coli C43(DE3) resulted in a protein with lower purity compared to EfmRseP expressed in L. plantarum. To our knowledge, this is the first time L. plantarum and the pSIP expression system have been applied for the production of membrane proteins.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de la Membrana , Humanos , Proteínas de la Membrana/genética , Benchmarking , Escherichia coli/genética , Antibacterianos , Cromatografía de Afinidad , Endopeptidasas
5.
Sci Rep ; 13(1): 10930, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414859

RESUMEN

A urinary tract infection (UTI) occurs when bacteria enter and multiply in the urinary system. The infection is most often caused by enteric bacteria that normally live in the gut, which include Enterococcus faecium. Without antibiotic treatment, UTIs can progress to life-threatening septic shock. Early diagnosis and identification of the pathogen will reduce antibiotic use and improve patient outcomes. In this work, we develop and optimize a cost-effective and rapid (< 40 min) method for detecting E. faecium in urine. The method uses a fluorescently labelled bacteriocin enterocin K1 (FITC-EntK1) that binds specifically to E. faecium and is then detected using a conventional flow cytometer. Using this detection assay, urine containing E. faecium was identified by an increase in the fluorescent signals by 25-73-fold (median fluorescence intensity) compared to control samples containing Escherichia coli or Staphylococcus aureus. The method presented in this work is a proof of concept showing the potential of bacteriocins to act as specific probes for the detection of specific bacteria, such as pathogens, in biological samples.


Asunto(s)
Bacteriocinas , Enterococcus faecium , Enterococos Resistentes a la Vancomicina , Humanos , Enterococcus faecium/metabolismo , Vancomicina/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacteriocinas/metabolismo , Enterococos Resistentes a la Vancomicina/metabolismo , Pruebas de Sensibilidad Microbiana
6.
BMC Genomics ; 24(1): 295, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259063

RESUMEN

BACKGROUND: Our knowledge about the ecological role of bacterial antimicrobial peptides (bacteriocins) in the human gut is limited, particularly in relation to their role in the diversification of the gut microbiota during early life. The aim of this paper was therefore to address associations between bacteriocins and bacterial diversity in the human gut microbiota. To investigate this, we did an extensive screening of 2564 healthy human gut metagenomes for the presence of predicted bacteriocin-encoding genes, comparing bacteriocin gene presence to strain diversity and age. RESULTS: We found that the abundance of bacteriocin genes was significantly higher in infant-like metagenomes (< 2 years) compared to adult-like metagenomes (2-107 years). By comparing infant-like metagenomes with and without a given bacteriocin, we found that bacteriocin presence was associated with increased strain diversities. CONCLUSIONS: Our findings indicate that bacteriocins may play a role in the strain diversification during the infant gut microbiota establishment.


Asunto(s)
Microbioma Gastrointestinal , Metagenoma , Humanos , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Minería de Datos , Microbioma Gastrointestinal/efectos de los fármacos , Bacteriocinas/farmacología , Genoma
7.
Microlife ; 4: uqad025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223736

RESUMEN

Site-2-proteases are a class of intramembrane proteases involved in regulated intramembrane proteolysis. Regulated intramembrane proteolysis is a highly conserved signaling mechanism that commonly involves sequential digestion of an anti-sigma factor by a site-1- and site-2-protease in response to external stimuli, resulting in an adaptive transcriptional response. Variation of this signaling cascade continues to emerge as the role of site-2-proteases in bacteria continues to be explored. Site-2-proteases are highly conserved among bacteria and play a key role in multiple processes, including iron uptake, stress response, and pheromone production. Additionally, an increasing number of site-2-proteases have been found to play a pivotal role in the virulence properties of multiple human pathogens, such as alginate production in Pseudomonas aeruginosa, toxin production in Vibrio cholerae, resistance to lysozyme in enterococci and antimicrobials in several Bacillus spp, and cell-envelope lipid composition in Mycobacterium tuberculosis. The prominent role of site-2-proteases in bacterial pathogenicity highlights the potential of site-2-proteases as novel targets for therapeutic intervention. In this review, we summarize the role of site-2-proteases in bacterial physiology and virulence, as well as evaluate the therapeutic potential of site-2-proteases.

8.
Microorganisms ; 11(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838466

RESUMEN

In view of the current threat of antibiotic resistance, new antimicrobials with low risk of resistance development are demanded. Lcn972 is a lactococcal bacteriocin that inhibits septum formation by binding to the cell wall precursor lipid II in Lactococcus. It has a species-specific spectrum of activity, making Lcn972 an attractive template to develop or improve existing antibiotics. The aim of this work was to identify mutations present in the Lcn972-resistant clone Lactococcus cremoris D1-20, previously evolved from the sensitive strain L. cremoris MG1614. Whole-genome sequencing and comparison over the reference genome L. cremoris MG1363 identified several unexpected mutations in the parental strain MG1614, likely selected during in-house propagation. In the Lcn972R clone, two previously identified mutations were mapped and confirmed. Additionally, another transposition event deregulating cellobiose uptake was identified along with three point mutations of unknown consequences for Lcn972 resistance. Two new independent evolution experiments exposing L. cremoris MG1614 to Lcn972 revealed transposition of IS981 into the LLMG_RS12285 locus as the predominant mutation selected by Lcn972. This event occurs early during evolution and was found in 100% of the evolved clones, while other mutations were not selected. Therefore, activation of LLMG_RS12285 coding for a putative anti-ECF (extra-cytoplasmic function) sigma factor is regarded as the main Lcn972 resistance factor in L. cremoris MG1614.

9.
Int Wound J ; 20(1): 120-130, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35633295

RESUMEN

The study aimed to evaluate the antibacterial efficacy of Lugol's solution 5% and Gentian violet 1% against methicillin-resistant Staphylococcus aureus (MRSA) biofilm in vivo. The bactericidal efficacy for treatment of MRSA-biofilm skin wound infection was tested in a murine model. Luciferase-tagged S. aureus Xen31, a MRSA-strain derived from S. aureus ATCC-3359130, was used for infection. Wounds were made in the skin of mice and infected with MRSA. The mice were treated with Lugol's solution and Gentian violet. Application of the antimicrobial agents started 24 hours post infection and was repeated daily for five-days. The antimicrobial effect on the biofilm bacteria was evaluated by measuring bioluminescence from MRSA daily for seven-days. Lugol's solution and Gentian violet showed a significant reduction in luminescent signals from the first assessment day to all subsequent days (P < .001). Lugol's solution and Gentian violet effectively eradicated MRSA in biofilm in vivo and could be alternatives or in addition to topical antibiotics when MRSA-biofilm wound infection is suspected.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Enfermedades Cutáneas Infecciosas , Traumatismos de los Tejidos Blandos , Infección de Heridas , Animales , Ratones , Violeta de Genciana/uso terapéutico , Staphylococcus aureus , Antibacterianos/uso terapéutico , Infección de Heridas/tratamiento farmacológico , Traumatismos de los Tejidos Blandos/tratamiento farmacológico , Biopelículas
10.
Antibiotics (Basel) ; 11(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36551348

RESUMEN

The rise of antibiotic-resistant bacteria is among the biggest challenges in human and veterinary medicine. One of the major factors that contributes to resistance is use of frontline clinical antibiotics in veterinary practices. To avoid this problem, searching for antimicrobials aimed at veterinary applications is becoming especially important. Thiopeptide micrococcin P1 and leaderless peptide EntEJ97s are two different bacteriocins that are very active against many gram-positive bacteria; however, sensitive bacteria can rapidly develop resistance towards those bacteriocins. To overcome this problem, we searched for synergy between those bacteriocins and conventional antibiotics against methicillin-resistant Staphylococcus pseudintermedius (MRSP): a common pathogen in animal skin infections. The two bacteriocins acted synergistically with each other and with penicillin G against MRSP clinical isolates in both planktonic and biofilm assays; they also prevented resistance development. The therapeutic potential was further validated in a murine skin infection model that showed that a combination of micrococcin P1, EntEJ97s and penicillin G reduced cell-forming units of MRSP by 2-log10 CFU/g. Taken together, our data show that a combination of bacteriocins with conventional antibiotics can not only prevent resistance development but also pave the way to revitalize some old, less useful antibiotics, such as penicillin, which by itself has no effect on methicillin-resistant pathogens.

11.
Microb Cell Fact ; 21(1): 236, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36368990

RESUMEN

Bacteriocins are ribosomally synthesized antimicrobial peptides, that either kill target bacteria or inhibit their growth. Bacteriocins are used in food preservation and are of increasing interest as potential alternatives to conventional antibiotics. In the present study, we show that Lactococcus petauri B1726, a strain isolated from fermented balsam pear, produces a heat-stable and protease-sensitive compound. Following genome sequencing, a gene cluster for production of a class IId bacteriocin was identified consisting of garQ (encoding for the bacteriocin garvicin Q), garI (for a putative immunity protein), garC, and garD (putative transporter proteins). Growth conditions were optimized for increased bacteriocin activity in supernatants of L. petauri B1726 and purification and mass spectrometry identified the compound as garvicin Q. Further experiments suggest that garvicin Q adsorbs to biomass of various susceptible and insusceptible bacteria and support the hypothesis that garvicin Q requires a mannose-family phosphotransferase system (PTSMan) as receptor to kill target bacteria by disruption of membrane integrity. Heterologous expression of a synthetic garQICD operon was established in Corynebacterium glutamicum demonstrating that genes garQICD are responsible for biosynthesis and secretion of garvicin Q. Moreover, production of garvicin Q by the recombinant C. glutamicum strain was improved by using a defined medium yet product levels were still considerably lower than with the natural L. petauri B1726 producer strain.Collectively, our data identifies the genetic basis for production of the bacteriocin garvicin Q by L. petauri B1726 and provides insights into the receptor and mode of action of garvicin Q. Moreover, we successfully performed first attempts towards biotechnological production of this interesting bacteriocin using natural and heterologous hosts.


Asunto(s)
Bacteriocinas , Humanos , Bacteriocinas/farmacología , Antibacterianos/farmacología , Operón , Bacterias/metabolismo
12.
J Biol Chem ; 298(11): 102593, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36244452

RESUMEN

Enterocin K1 (EntK1), a bacteriocin that is highly potent against vancomycin-resistant enterococci, depends on binding to an intramembrane protease of the site-2 protease family, RseP, for its antimicrobial activity. RseP is highly conserved in both EntK1-sensitive and EntK1-insensitive bacteria, and the molecular mechanisms underlying the interaction between RseP and EntK1 and bacteriocin sensitivity are unknown. Here, we describe a mutational study of RseP from EntK1-sensitive Enterococcus faecium to identify regions of RseP involved in bacteriocin binding and activity. Mutational effects were assessed by studying EntK1 sensitivity and binding with strains of naturally EntK1-insensitive Lactiplantibacillus plantarum-expressing various RseP variants. We determined that site-directed mutations in conserved sequence motifs related to catalysis and substrate binding, and even deletion of two such motifs known to be involved in substrate binding, did not abolish bacteriocin sensitivity, with one exception. A mutation of a highly conserved asparagine, Asn359, in the extended so-called LDG motif abolished both binding of and killing by EntK1. By constructing various hybrids of the RseP proteins from sensitive E. faecium and insensitive L. plantarum, we showed that the extracellular PDZ domain is the key determinant of EntK1 sensitivity. Taken together, these data may provide valuable insight for guided construction of novel bacteriocins and may contribute to establishing RseP as an antibacterial target.


Asunto(s)
Bacteriocinas , Enterococcus faecium , Proteínas de Escherichia coli , Bacteriocinas/genética , Bacteriocinas/farmacología , Proteínas de Escherichia coli/metabolismo , Endopeptidasas/metabolismo , Proteínas de la Membrana/metabolismo , Enterococcus faecium/metabolismo , Metaloproteasas
13.
Bio Protoc ; 12(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35978579

RESUMEN

Bacteriocins are antimicrobial peptides with activity against antibiotic resistant bacterial pathogens. Here, we describe a set of methods aimed at purifying, identifying, and characterizing new bacteriocins. The purification consists of ammonium sulphate precipitation, cation-exchange chromatography, and reversed-phase chromatography. The yield of the bacteriocin is quantified by bacteriocin antimicrobial activity in a microtiter plate assay after each purification step. The mass of the purified bacteriocin is assessed by MALDI TOF MS analysis of the active fractions after reversed-phase chromatography. The mass is compared with the theoretical mass based on genetic information from the whole genome sequencing of the bacteriocin producer strain. Physicochemical characterization is performed by assessing antimicrobial activity following heat and protease treatments. Fluorescent techniques are used to examine the capacity of the bacteriocin to disrupt membrane integrity. Herein a set of protocols for purification and characterization of the bacteriocin nisin Z is used as a typical example in this paper.

14.
Microbiol Spectr ; 10(4): e0095422, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35730941

RESUMEN

Infections caused by multiresistant pathogens have become a major problem in both human and veterinary medicine. Due to the declining efficacy of many antibiotics, new antimicrobials are needed. Promising alternatives or additions to antibiotics are bacteriocins, antimicrobial peptides of bacterial origin with activity against many pathogens, including antibiotic-resistant strains. From a sample of fermented maize, we isolated a Vagococcus fluvialis strain producing a bacteriocin with antimicrobial activity against multiresistant Enterococcus faecium. Whole-genome sequencing revealed the genes for a novel two-peptide lantibiotic. The production of the lantibiotic by the isolate was confirmed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, which revealed distinct peaks at 4,009.4 m/z and 3,181.7 m/z in separate fractions from reversed-phase chromatography. The combination of the two peptides resulted in a 1,200-fold increase in potency, confirming the two-peptide nature of the bacteriocin, named vagococcin T. The bacteriocin was demonstrated to kill sensitive cells by the formation of pores in the cell membrane, and its inhibition spectrum covers most Gram-positive bacteria, including multiresistant pathogens. To our knowledge, this is the first bacteriocin characterized from Vagococcus. IMPORTANCE Enterococci are common commensals in the intestines of humans and animals, but in recent years, they have been identified as one of the major causes of hospital-acquired infections due to their ability to quickly acquire virulence and antibiotic resistance determinants. Many hospital isolates are multiresistant, thereby making current therapeutic options critically limited. Novel antimicrobials or alternative therapeutic approaches are needed to overcome this global problem. Bacteriocins, natural ribosomally synthesized peptides produced by bacteria to eliminate other bacterial species living in a competitive environment, provide such an alternative. In this work, we purified and characterized a novel two-peptide lantibiotic produced by Vagococcus fluvialis LMGT 4216 isolated from fermented maize. The novel lantibiotic showed a broad spectrum of inhibition of Gram-positive strains, including vancomycin-resistant Enterococcus faecium, demonstrating its therapeutic potential.


Asunto(s)
Bacteriocinas , Enterococos Resistentes a la Vancomicina , Antibacterianos/farmacología , Bacteriocinas/metabolismo , Bacteriocinas/farmacología , Enterococcaceae , Péptidos/farmacología
15.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269976

RESUMEN

Bacteriocins are emerging as a viable alternative to antibiotics due to their ability to inhibit growth or kill antibiotic resistant pathogens. Herein, we evaluated the ability of the bacteriocin Garvicin KS (GarKS) produced by Lactococcus garvieae KS1546 isolated from cow milk to inhibit the growth of fish and foodborne bacterial pathogens. We found that GarKS inhibited the growth of five fish L. garvieae strains isolated from infected trout and eels. Among fish pathogens, GarKS inhibited the growth of Streptococcus agalactiae serotypes Ia and Ib, and Aeromonas hydrophila but did not inhibit the growth of Edwardsiella tarda. In addition, it inhibited the growth of A. salmonicida strain 6421 but not A. salmonicida strain 6422 and Yersinia ruckeri. There was no inhibition of three foodborne bacterial species, namely Salmonella enterica, Klebsiella pneumoniae, and Escherichia coli. In vitro cytotoxicity tests using different GarKS concentrations showed that the highest concentration of 33 µg/mL exhibited low cytotoxicity, while concentrations ≤3.3 µg/mL had no cytotoxicity on CHSE-214 and RTG-2 cells. In vivo tests showed that zebrafish larvae treated with 33 µg/mL and 3.3 µg/mL GarKS prior to challenge had 53% and 48% survival, respectively, while concentrations ≤0.33 µg/mL were nonprotective. Altogether, these data show that GarKS has a broad inhibitory spectrum against Gram positive and negative bacteria and that it has potential applications as a therapeutic agent for a wide range of bacterial pathogens. Thus, future studies should include clinical trials to test the efficacy of GarKS against various bacterial pathogens in farmed fish.


Asunto(s)
Bacteriocinas , Enfermedades de los Peces , Yersiniosis , Animales , Antibacterianos/farmacología , Bacteriocinas/farmacología , Bovinos , Femenino , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Lactococcus , Larva , Pez Cebra
17.
Microb Cell Fact ; 21(1): 11, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033086

RESUMEN

BACKGROUND: The bacteriocin nisin is naturally produced by Lactococcus lactis as an inactive prepeptide that is modified posttranslationally resulting in five (methyl-)lanthionine rings characteristic for class Ia bacteriocins. Export and proteolytic cleavage of the leader peptide results in release of active nisin. By targeting the universal peptidoglycan precursor lipid II, nisin has a broad target spectrum including important human pathogens such as Listeria monocytogenes and methicillin-resistant Staphylococcus aureus strains. Industrial nisin production is currently performed using natural producer strains resulting in rather low product purity and limiting its application to preservation of dairy food products. RESULTS: We established heterologous nisin production using the biotechnological workhorse organism Corynebacterium glutamicum in a two-step process. We demonstrate successful biosynthesis and export of fully modified prenisin and its activation to mature nisin by a purified, soluble variant of the nisin protease NisP (sNisP) produced in Escherichia coli. Active nisin was detected by a L. lactis sensor strain with strictly nisin-dependent expression of the fluorescent protein mCherry. Following activation by sNisP, supernatants of the recombinant C. glutamicum producer strain cultivated in standard batch fermentations contained at least 1.25 mg/l active nisin. CONCLUSIONS: We demonstrate successful implementation of a two-step process for recombinant production of active nisin with C. glutamicum. This extends the spectrum of bioactive compounds that may be produced using C. glutamicum to a bacteriocin harboring complex posttranslational modifications. Our results provide a basis for further studies to optimize product yields, transfer production to sustainable substrates and purification of pharmaceutical grade nisin.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Nisina/biosíntesis , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crecimiento & desarrollo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Nisina/química , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Precursores de Proteínas/biosíntesis , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Tripsina/metabolismo
19.
Microbiol Spectr ; 9(2): e0029921, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34643411

RESUMEN

Bovine mastitis infection in dairy cattle is a significant economic burden for the dairy industry globally. To reduce the use of antibiotics in treatment of clinical mastitis, new alternative treatment options are needed. Antimicrobial peptides from bacteria, also known as bacteriocins, are potential alternatives for combating mastitis pathogens. In search of novel bacteriocins against mastitis pathogens, we screened samples of Norwegian bovine raw milk and found a Streptococcus uberis strain with potent antimicrobial activity toward Enterococcus, Streptococcus, Listeria, and Lactococcus. Whole-genome sequencing of the strain revealed a multibacteriocin gene cluster encoding one class IIb bacteriocin, two class IId bacteriocins, in addition to a three-component regulatory system and a dedicated ABC transporter. Isolation and purification of the antimicrobial activity from culture supernatants resulted in the detection of a 6.3-kDa mass peak by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, a mass corresponding to the predicted size of one of the class IId bacteriocins. The identification of this bacteriocin, called ubericin K, was further confirmed by in vitro protein synthesis, which showed the same inhibitory spectrum as the purified antimicrobial compound. Ubericin K shows highest sequence similarity to the class IId bacteriocins bovicin 255, lactococcin A, and garvieacin Q. We found that ubericin K uses the sugar transporter mannose phosphotransferase (PTS) as a target receptor. Further, by using the pHlourin sensor system to detect intracellular pH changes due to leakage across the membrane, ubericin K was shown to be a pore former, killing target cells by membrane disruption. IMPORTANCE Bacterial infections in dairy cows are a major burden to farmers worldwide because infected cows require expensive treatments and produce less milk. Today, infected cows are treated with antibiotics, a practice that is becoming less effective due to antibiotic resistance. Compounds other than antibiotics also exist that kill bacteria causing infections in cows; these compounds, known as bacteriocins, are natural products produced by other bacteria in the environment. In this work, we discover a new bacteriocin that we call ubericin K, which kills several species of bacteria known to cause infections in dairy cows. We also use in vitro synthesis as a novel method for rapidly characterizing bacteriocins directly from genomic data, which could be useful for other researchers. We believe that ubericin K and the methods described in this work will aid in the transition away from antibiotics in the dairy industry.


Asunto(s)
Antibacterianos/uso terapéutico , Bacteriocinas/uso terapéutico , Enfermedades de los Bovinos/tratamiento farmacológico , Mastitis Bovina/tratamiento farmacológico , Streptococcus/metabolismo , Animales , Membrana Externa Bacteriana/efectos de los fármacos , Membrana Externa Bacteriana/patología , Bacteriocinas/genética , Bovinos , Enfermedades de los Bovinos/microbiología , Enterococcus/efectos de los fármacos , Enterococcus/crecimiento & desarrollo , Femenino , Lactococcus/efectos de los fármacos , Lactococcus/crecimiento & desarrollo , Listeria/efectos de los fármacos , Listeria/crecimiento & desarrollo , Mastitis Bovina/microbiología , Pruebas de Sensibilidad Microbiana , Fosfotransferasas/metabolismo , Percepción de Quorum , Streptococcus/genética
20.
Eur J Pharm Sci ; 166: 105990, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34481880

RESUMEN

Superficial infections in chronic wounds can prevent the wound healing process by the development of persistent infections and drug-resistant biofilms. Topically applied antimicrobial formulations with stabilized and controlled release offer significant benefits for the effective treatment of wound infections. Bacteriocins are the antimicrobial peptides (AMPs) produced by bacteria that are viable alternatives to antibiotics owing to their natural origin and low propensity for resistance development. Herein, we developed a hybrid hydrogel composed of Pluronic F127 (PF127), ethylenediaminetetraacetic acid (EDTA) loaded liposomes, glutathione (GSH), and the bacteriocin Garvicin KS (GarKS) referred to as "GarKS gel". The GarKS gel exhibited suitable viscosity and rheological properties along with controlled release behavior (up to 9 days) for effective peptide delivery following topical application. Potent in vitro antibacterial and anti-biofilm effects of GarKS gel were evident against the Gram-positive bacterium Staphylococcus aureus. The in vivo treatment of methicillin resistant S. aureus (MRSA) infected mouse wounds suggested potent antibacterial effects of the GarKS gel following multiple applications of once-a-day application for three consecutive days. Altogether, these results provide proof-of-concept for the successful development of AMP loaded topical formulation for effective treatment of wound infections.


Asunto(s)
Bacteriocinas , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Infección de Heridas , Animales , Antibacterianos , Hidrogeles , Ratones , Infecciones Estafilocócicas/tratamiento farmacológico , Infección de Heridas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA