Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(40): e2305071120, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37774097

RESUMEN

Extracellular potassium concentration ([K+]e) is known to increase as a function of arousal. [K+]e is also a potent modulator of transmitter release. Yet, it is not known whether [K+]e is involved in the neuromodulator release associated with behavioral transitions. We here show that manipulating [K+]e controls the local release of monoaminergic neuromodulators, including norepinephrine (NE), serotonin, and dopamine. Imposing a [K+]e increase is adequate to boost local NE levels, and conversely, lowering [K+]e can attenuate local NE. Electroencephalography analysis and behavioral assays revealed that manipulation of cortical [K+]e was sufficient to alter the sleep-wake cycle and behavior of mice. These observations point to the concept that NE levels in the cortex are not solely determined by subcortical release, but that local [K+]e dynamics have a strong impact on cortical NE. Thus, cortical [K+]e is an underappreciated regulator of behavioral transitions.


Asunto(s)
Nivel de Alerta , Norepinefrina , Ratones , Animales , Electroencefalografía , Serotonina , Dopamina
2.
PLoS Biol ; 20(9): e3001772, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36067248

RESUMEN

Potassium ion (K+) plays a critical role as an essential electrolyte in all biological systems. Genetically-encoded fluorescent K+ biosensors are promising tools to further improve our understanding of K+-dependent processes under normal and pathological conditions. Here, we report the crystal structure of a previously reported genetically-encoded fluorescent K+ biosensor, GINKO1, in the K+-bound state. Using structure-guided optimization and directed evolution, we have engineered an improved K+ biosensor, designated GINKO2, with higher sensitivity and specificity. We have demonstrated the utility of GINKO2 for in vivo detection and imaging of K+ dynamics in multiple model organisms, including bacteria, plants, and mice.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Animales , Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Iones , Ratones , Potasio
3.
Cell Rep ; 28(5): 1182-1194.e4, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31365863

RESUMEN

Brain state fluctuations modulate sensory processing, but the factors governing state-dependent neural activity remain unclear. Here, we tracked the dynamics of cortical extracellular K+ concentrations ([K+]o) during awake state transitions and manipulated [K+]o in slices, during visual processing, and during skilled motor execution. When mice transitioned from quiescence to locomotion, [K+]o increased by 0.6-1.0 mM in all cortical areas analyzed, and this preceded locomotion by 1 s. Emulating the state-dependent [K+]o increase in cortical slices caused neuronal depolarization and enhanced input-output transformation. In vivo, locomotion increased the gain of visually evoked responses in layer 2/3 of visual cortex; this effect was recreated by imposing a [K+]o increase. Elevating [K+]o in the motor cortex increased movement-induced neuronal spiking in layer 5 and improved motor performance. Thus, [K+]o increases in a cortex-wide state-dependent manner, and this [K+]o increase affects both sensory and motor processing through the dynamic modulation of neural activity.


Asunto(s)
Conducta Animal , Corteza Cerebral/metabolismo , Potasio/metabolismo , Vigilia , Animales , Cationes Monovalentes/metabolismo , Corteza Cerebral/citología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...