Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 4140, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31515501

RESUMEN

Persistent transcriptional and morphological events in the nucleus accumbens (NAc) and other brain reward regions contribute to the long-lasting behavioral adaptations that characterize drug addiction. Opiate exposure reduces the density of dendritic spines on medium spiny neurons of the NAc; however, the underlying transcriptional and cellular events mediating this remain unknown. We show that heroin self-administration negatively regulates the actin-binding protein drebrin in the NAc. Using virus-mediated gene transfer, we show that drebrin overexpression in the NAc is sufficient to decrease drug seeking and increase dendritic spine density, whereas drebrin knockdown potentiates these effects. We demonstrate that drebrin is transcriptionally repressed by the histone modifier HDAC2, which is relieved by pharmacological inhibition of histone deacetylases. Importantly, we demonstrate that heroin-induced adaptations occur only in the D1+ subset of medium spiny neurons. These findings establish an essential role for drebrin, and upstream transcriptional regulator HDAC2, in opiate-induced plasticity in the NAc.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Neuropéptidos/metabolismo , Trastornos Relacionados con Opioides/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Heroína/efectos adversos , Histona Desacetilasa 2/metabolismo , Masculino , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuropéptidos/genética , Núcleo Accumbens/metabolismo , Alcaloides Opiáceos/efectos adversos , Trastornos Relacionados con Opioides/fisiopatología , Dolor/metabolismo , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
2.
Stem Cell Reports ; 9(2): 710-723, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28793249

RESUMEN

Impaired human oligodendrocyte progenitor cell (hOPC) differentiation likely contributes to failed remyelination in multiple sclerosis. The characterization of molecular pathways that regulate hOPC differentiation will provide means to induce remyelination. In this study, we determined the gene expression profile of PDGFαR+ hOPCs during initial oligodendrocyte commitment. Weighted gene coexpression network analysis was used to define progenitor and differentiation-specific gene expression modules and functionally important hub genes. These modules were compared with rodent OPC and oligodendrocyte data to determine the extent of species conservation. These analyses identified G-protein ß4 (GNB4), which was associated with hOPC commitment. Lentiviral GNB4 overexpression rapidly induced human oligodendrocyte differentiation. Following xenograft in hypomyelinating shiverer/rag2 mice, GNB4 overexpression augmented myelin synthesis and the ability of hOPCs to ensheath host axons, establishing GNB4 as functionally important in human myelination. As such, network analysis of hOPC gene expression accurately predicts genes that influence human oligodendrocyte differentiation in vivo.


Asunto(s)
Diferenciación Celular/genética , Biología Computacional/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genómica , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/metabolismo , Animales , Axones/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Perfilación de la Expresión Génica , Genómica/métodos , Humanos , Oligodendroglía/citología , Oligodendroglía/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Roedores , Transducción de Señal , Transcriptoma
3.
Exp Neurol ; 283(Pt B): 489-500, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27001544

RESUMEN

Oligodendrocyte development has been studied for several decades, and has served as a model system for both neurodevelopmental and stem/progenitor cell biology. Until recently, the vast majority of studies have been conducted in lower species, especially those focused on rodent development and remyelination. In humans, the process of myelination requires the generation of vastly more myelinating glia, occurring over a period of years rather than weeks. Furthermore, as evidenced by the presence of chronic demyelination in a variety of human neurologic diseases, it appears likely that the mechanisms that regulate development and become dysfunctional in disease may be, in key ways, divergent across species. Improvements in isolation techniques, applied to primary human neural and oligodendrocyte progenitors from both fetal and adult brain, as well as advancements in the derivation of defined progenitors from human pluripotent stem cells, have begun to reveal the extent of both species-conserved signaling pathways and potential key differences at cellular and molecular levels. In this article, we will review the commonalities and differences in myelin development between rodents and man, describing the approaches used to study human oligodendrocyte differentiation and myelination, as well as heterogeneity within targetable progenitor pools, and discuss the advances made in determining which conserved pathways may be both modeled in rodents and translate into viable therapeutic strategies to promote myelin repair.


Asunto(s)
Trasplante de Células/métodos , Enfermedades Desmielinizantes/cirugía , Oligodendroglía/fisiología , Células Madre/fisiología , Animales , Diferenciación Celular , Humanos , Regeneración/fisiología
4.
Nat Neurosci ; 18(7): 959-61, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26030849

RESUMEN

Activin receptor signaling, including the transcription factor Smad3, was upregulated in the rat nucleus accumbens (NAc) shell following withdrawal from cocaine. Direct genetic and pharmacological manipulations of this pathway bidirectionally altered cocaine seeking while governing morphological plasticity in NAc neurons. Thus, Activin/Smad3 signaling is induced following withdrawal from cocaine, and such regulation may be a key molecular mechanism underlying behavioral and cellular plasticity in the brain following cocaine self-administration.


Asunto(s)
Receptores de Activinas/metabolismo , Conducta Animal/efectos de los fármacos , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Plasticidad Neuronal/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína smad3/metabolismo , Animales , Cocaína/administración & dosificación , Espinas Dendríticas/efectos de los fármacos , Inhibidores de Captación de Dopamina/administración & dosificación , Masculino , Núcleo Accumbens/citología , Ratas , Ratas Sprague-Dawley , Autoadministración , Transducción de Señal/genética
5.
Neuron ; 82(3): 645-58, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24811383

RESUMEN

Repeated cocaine exposure causes persistent, maladaptive alterations in brain and behavior, and hope for effective therapeutics lies in understanding these processes. We describe here an essential role for fragile X mental retardation protein (FMRP), an RNA-binding protein and regulator of dendritic protein synthesis, in cocaine conditioned place preference, behavioral sensitization, and motor stereotypy. Cocaine reward deficits in FMRP-deficient mice stem from elevated mGluR5 (or GRM5) function, similar to a subset of fragile X symptoms, and do not extend to natural reward. We find that FMRP functions in the adult nucleus accumbens (NAc), a critical addiction-related brain region, to mediate behavioral sensitization but not cocaine reward. FMRP-deficient mice also exhibit several abnormalities in NAc medium spiny neurons, including reduced presynaptic function and premature changes in dendritic morphology and glutamatergic neurotransmission following repeated cocaine treatment. Together, our findings reveal FMRP as a critical mediator of cocaine-induced behavioral and synaptic plasticity.


Asunto(s)
Cocaína/administración & dosificación , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Animales , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Autoadministración
6.
J Neurosci ; 32(34): 11700-5, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22915112

RESUMEN

Preclinical animal models have provided strong evidence that estrogen (E) therapy (ET) enhances cognition and induces spinogenesis in neuronal circuits. However, clinical studies have been inconsistent, with some studies revealing adverse effects of ET, including an increased risk of dementia. In an effort to bridge this disconnect between the preclinical and clinical data, we have developed a nonhuman primate (NHP) model of ET combined with high-resolution dendritic spine analysis of dorsolateral prefrontal cortical (dlPFC) neurons. Previously, we reported cyclic ET in aged, ovariectomized NHPs increased spine density on dlPFC neurons. Here, we report that monkeys treated with cyclic E treatment paired with cyclic progesterone (P), continuous E combined with P (either cyclic or continuous), or unopposed continuous E failed to increase spines on dlPFC neurons. Given that the most prevalent form of ET prescribed to women is a combined and continuous E and P, these data bring into convergence the human neuropsychological findings and preclinical neurobiological evidence that standard hormone therapy in women is unlikely to yield the synaptic benefit presumed to underlie the cognitive enhancement reported in animal models.


Asunto(s)
Envejecimiento/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Estrógenos/farmacología , Neuronas/citología , Corteza Prefrontal/citología , Progesterona/farmacología , Envejecimiento/patología , Análisis de Varianza , Animales , Estrógenos/sangre , Femenino , Macaca mulatta , Microscopía Confocal , Neuronas/efectos de los fármacos , Ovariectomía , Corteza Prefrontal/efectos de los fármacos , Progesterona/sangre
7.
Nat Neurosci ; 15(6): 891-6, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22522400

RESUMEN

Repeated cocaine administration increases the dendritic arborization of nucleus accumbens neurons, but the underlying signaling events remain unknown. Here we show that repeated exposure to cocaine negatively regulates the active form of Rac1, a small GTPase that controls actin remodeling in other systems. Further, we show, using viral-mediated gene transfer, that overexpression of a dominant negative mutant of Rac1 or local knockout of Rac1 is sufficient to increase the density of immature dendritic spines on nucleus accumbens neurons, whereas overexpression of a constitutively active Rac1 or light activation of a photoactivatable form of Rac1 blocks the ability of repeated cocaine exposure to produce this effect. Downregulation of Rac1 activity likewise promotes behavioral responses to cocaine exposure, with activation of Rac1 producing the opposite effect. These findings establish that Rac1 signaling mediates structural and behavioral plasticity in response to cocaine exposure.


Asunto(s)
Cocaína/farmacología , Espinas Dendríticas/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Plasticidad Neuronal/efectos de los fármacos , Neuropéptidos/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP rac/metabolismo , Animales , Western Blotting , Trastornos Relacionados con Cocaína , Espinas Dendríticas/metabolismo , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuropéptidos/genética , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rac1
8.
J Neurosci ; 31(35): 12426-36, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21880903

RESUMEN

Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB, regulate a wide range of cellular processes, including dendritic spine formation and functional synapse plasticity. However, the signaling mechanisms that link BDNF-activated TrkB to F-actin remodeling enzymes and dendritic spine morphological plasticity remain poorly understood. We report here that BDNF/TrkB signaling in neurons activates the Vav family of Rac/RhoA guanine nucleotide exchange factors through a novel TrkB-dependent mechanism. We find that Vav is required for BDNF-stimulated Rac-GTP production in cortical and hippocampal neurons. Vav is partially enriched at excitatory synapses in the postnatal hippocampus but does not appear to be required for normal dendritic spine density. Rather, we observe significant reductions in both BDNF-induced, rapid, dendritic spine head growth and in CA3-CA1 theta burst-stimulated long-term potentiation in Vav-deficient mouse hippocampal slices, suggesting that Vav-dependent regulation of dendritic spine morphological plasticity facilitates normal functional synapse plasticity.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Espinas Dendríticas/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/citología , Proteínas Proto-Oncogénicas c-vav/metabolismo , Sinapsis/efectos de los fármacos , Animales , Animales Recién Nacidos , Células Cultivadas , Corteza Cerebral/citología , Estimulación Eléctrica , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes , Hipocampo/citología , Humanos , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Ratones , Neuronas/ultraestructura , Técnicas de Cultivo de Órganos , Ratas , Sinapsis/fisiología , Sinaptosomas/efectos de los fármacos , Transfección/métodos
9.
Pharmacol Res ; 62(1): 11-7, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20123018

RESUMEN

The use of histone deacetylase inhibitors (HDACIs) as a therapeutic tool for neurodegenerative disorders has been examined with great interest in the last decade. The functional response to treatment with broad-spectrum inhibitors however, has been heterogeneous: protective in some cases and detrimental in others. In this review we discuss potential underlying causes for these apparently contradictory results. Because HDACs are part of repressive complexes, the functional outcome has been characteristically attributed to enhanced gene expression due to increased acetylation of lysine residues on nucleosomal histones. However, it is important to take into consideration that the up-regulation of diverse sets of genes (i.e. pro-apoptotic and anti-apoptotic) may orchestrate different responses in diverse cell types. An alternative possibility is that broad-spectrum pharmacological inhibition may target nuclear or cytosolic HDAC isoforms, with distinct non-histone substrates (i.e. transcription factors; cytoskeletal proteins). Thus, for any given neurological disorder, it is important to take into account the effect of HDACIs on neuronal, glial and inflammatory cells and define the relative contribution of distinct HDAC isoforms to the pathological process. This review article addresses how opposing effects on distinct cell types may profoundly influence the overall therapeutic potential of HDAC inhibitors when investigating treatments for neurodegenerative disorders.


Asunto(s)
Inhibidores de Histona Desacetilasas , Histona Desacetilasas/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores , Animales , Inhibidores de Histona Desacetilasas/efectos adversos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/genética , Humanos , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/inmunología , Neuroglía/efectos de los fármacos , Neuroglía/enzimología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Fármacos Neuroprotectores/efectos adversos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Linfocitos T/efectos de los fármacos , Linfocitos T/enzimología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...