Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
J Cardiovasc Dev Dis ; 11(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38667733

RESUMEN

Marfan syndrome (MIM: # 154700; MFS) is an autosomal dominant disease representing the most common form of heritable connective tissue disorder. The condition presents variable multiorgan expression, typically involving a triad of cardiovascular, eye, and skeletal manifestations. Other multisystemic features are often underdiagnosed. Moreover, the disease is characterized by age related penetrance. Diagnosis and management of MFS in the adult population are well-described in literature. Few studies are focused on MFS in the pediatric population, making the clinical approach (cardiac and multiorgan) to these cases challenging both in terms of diagnosis and serial follow-up. In this review, we provide an overview of MFS manifestations in children, with extensive revision of major organ involvement (cardiovascular ocular and skeletal). We attempt to shed light on minor aspects of MFS that can have a significant progressive impact on the health of affected children. MFS is an example of a syndrome where an early personalized approach to address a dynamic, genetically determined condition can make a difference in outcome. Applying an early multidisciplinary clinical approach to MFS cases can prevent acute and chronic complications, offer tailored management, and improve the quality of life of patients.

2.
Diagnostics (Basel) ; 14(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38535015

RESUMEN

Sotos syndrome is an autosomal dominant condition characterized by overgrowth with advanced bone age, macrodolicocephaly, motor developmental delays and learning difficulties, and characteristic facial features caused by heterozygous pathogenetic variants in the NSD1 gene located on chromosome 5q35. The prevalence of heart defects (HDs) in individuals with Sotos syndrome is estimated to be around 15-40%. Septal defects and patent ductus arteriosus are the most commonly diagnosed malformations, but complex defects have also been reported. The aim of our study was to analyze the prevalence of HD, the anatomic types, and the genetic characteristics of 45 patients with Sotos syndrome carrying pathogenetic variants of NSD1 or a 5q35 deletion encompassing NSD1, who were followed at Bambino Gesù Children's Hospital in Rome. Thirty-nine of the forty-five patients (86.7%) had a mutation in NSD1, while six of the forty-five (13.3%) had a deletion. Most of the patients (62.2%, 28/45) were male, with a mean age of 14 ± 7 years (range 0.2-37 years). A total of 27/45 (60.0%) of the patients had heart defects, isolated or combined with other defects, including septal defects (12 patients), aortic anomalies (9 patients), mitral valve and/or tricuspid valve dysplasia/insufficiency (1 patient), patent ductus arteriosus (3 patients), left ventricular non-compaction/hypertrabeculated left ventricle (LV) (4 patients), aortic coarctation (1 patient), aortopulmonary window (1 patient), and pulmonary valve anomalies (3 patients). The prevalences of HD in the two subgroups (deletion versus intragenic mutation) were similar (66.7% (4/6) in the deletion group versus 58.91% (23/39) in the intragenic variant group). Our results showed a higher prevalence of HD in patients with Sotos syndrome in comparison to that described in the literature, with similar distributions of patients with mutated and deleted genes. An accurate and detailed echocardiogram should be performed in patients with Sotos syndrome at diagnosis, and a specific cardiological follow-up program is needed.

3.
Eur J Hum Genet ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528056

RESUMEN

Autosomal dominant Kabuki syndrome (KS) is a rare multiple congenital anomalies/neurodevelopmental disorder caused by heterozygous inactivating variants or structural rearrangements of the lysine-specific methyltransferase 2D (KMT2D) gene. While it is often recognizable due to a distinctive gestalt, the disorder is clinically variable, and a phenotypic scoring system has been introduced to help clinicians to reach a clinical diagnosis. The phenotype, however, can be less pronounced in some patients, including those carrying postzygotic mutations. The full spectrum of pathogenic variation in KMT2D has not fully been characterized, which may hamper the clinical classification of a portion of these variants. DNA methylation (DNAm) profiling has successfully been used as a tool to classify variants in genes associated with several neurodevelopmental disorders, including KS. In this work, we applied a KS-specific DNAm signature in a cohort of 13 individuals with KMT2D VUS and clinical features suggestive or overlapping with KS. We succeeded in correctly classifying all the tested individuals, confirming diagnosis for three subjects and rejecting the pathogenic role of 10 VUS in the context of KS. In the latter group, exome sequencing allowed to identify the genetic cause underlying the disorder in three subjects. By testing five individuals with postzygotic pathogenic KMT2D variants, we also provide evidence that DNAm profiling has power to recognize pathogenic variants at different levels of mosaicism, identifying 15% as the minimum threshold for which DNAm profiling can be applied as an informative diagnostic tool in KS mosaics.

4.
Am J Med Genet A ; : e63580, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511524

RESUMEN

Deletions of the long arm of chromosome 20 (20q) are rare, with only 16 reported patients displaying a proximal interstitial 20q deletion. A 1.62 Mb minimal critical region at 20q11.2, encompassing three genes GDF5, EPB41L1, and SAMHD1, is proposed to be responsible for this syndrome. The leading clinical features include growth retardation, intractable feeding difficulties with gastroesophageal reflux, hypotonia and psychomotor developmental delay. Common facial dysmorphisms including triangular face, hypertelorism, and hypoplastic alae nasi were additionally reported. Here, we present the clinical and molecular findings of five new patients with proximal interstitial 20q deletions. We analyzed the phenotype and molecular data of all previously reported patients with 20q11.2q12 microdeletions, along with our five new cases. Copy number variation analysis of patients in our cohort has enabled us to identify the second critical region in the 20q11.2q12 region and redefine the first region that is initially identified. The first critical region spans 359 kb at 20q11.2, containing six MIM genes, including two disease-causing genes, GDF5 and CEP250. The second critical region spans 706 kb at 20q12, encompassing four MIM genes, including two disease-causing genes, MAFB and TOP1. We propose GDF5 to be the primary candidate gene generating the phenotype of patients with 20q11.2 deletions. Moreover, we hypothesize TOP1 as a potential candidate gene for the second critical region at 20q12. Of note, we cannot exclude the possibility of a synergistic role of other genes involved in the deletion, including a contiguous gene deletion syndrome or position effect affecting both critical regions. Further studies focusing on patients with proximal 20q deletions are required to support our hypothesis.

5.
Ital J Pediatr ; 50(1): 41, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443964

RESUMEN

TBX4 gene, located on human chromosome 17q23.2, encodes for T-Box Transcription Factor 4, a transcription factor that belongs to the T-box gene family and it is involved in the regulation of some embryonic developmental processes, with a significant impact on respiratory and skeletal illnesses. Herein, we present the case of a female neonate with persistent pulmonary hypertension (PH) who underwent extracorporeal membrane oxygenation (ECMO) on the first day of life and then resulted to have a novel variant of the TBX4 gene identified by Next-Generation Sequencing. We review the available literature about the association between PH with neonatal onset or emerging during the first months of life and mutations of the TBX4 gene, and compare our case to previously reported cases. Of 24 cases described from 2010 to 2023 sixteen (66.7%) presented with PH soon after birth. Skeletal abnormalities have been described in 5 cases (20%). Eleven cases (46%) were due to de novo mutations. Three patients (12%) required ECMO. Identification of this variant in affected individuals has implications for perinatal and postnatal management and genetic counselling. We suggest including TBX4 in genetic studies of neonates with pulmonary hypertension, even in the absence of skeletal abnormalities.


Asunto(s)
Hipertensión Pulmonar , Recién Nacido , Embarazo , Humanos , Femenino , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/genética , Asesoramiento Genético , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Proteínas de Dominio T Box/genética
6.
J Am Heart Assoc ; 13(3): e031377, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38293922

RESUMEN

BACKGROUND: Supravalvar aortic stenosis (SVAS) is a characteristic feature of Williams-Beuren syndrome (WBS). Its severity varies: ~20% of people with Williams-Beuren syndrome have SVAS requiring surgical intervention, whereas ~35% have no appreciable SVAS. The remaining individuals have SVAS of intermediate severity. Little is known about genetic modifiers that contribute to this variability. METHODS AND RESULTS: We performed genome sequencing on 473 individuals with Williams-Beuren syndrome and developed strategies for modifier discovery in this rare disease population. Approaches include extreme phenotyping and nonsynonymous variant prioritization, followed by gene set enrichment and pathway-level association tests. We next used GTEx v8 and proteomic data sets to verify expression of candidate modifiers in relevant tissues. Finally, we evaluated overlap between the genes/pathways identified here and those ascertained through larger aortic disease/trait genome-wide association studies. We show that SVAS severity in Williams-Beuren syndrome is associated with increased frequency of common and rarer variants in matrisome and immune pathways. Two implicated matrisome genes (ACAN and LTBP4) were uniquely expressed in the aorta. Many genes in the identified pathways were previously reported in genome-wide association studies for aneurysm, bicuspid aortic valve, or aortic size. CONCLUSIONS: Smaller sample sizes in rare disease studies necessitate new approaches to detect modifiers. Our strategies identified variation in matrisome and immune pathways that are associated with SVAS severity. These findings suggest that, like other aortopathies, SVAS may be influenced by the balance of synthesis and degradation of matrisome proteins. Leveraging multiomic data and results from larger aorta-focused genome-wide association studies may accelerate modifier discovery for rare aortopathies like SVAS.


Asunto(s)
Estenosis Aórtica Supravalvular , Síndrome de Williams , Humanos , Síndrome de Williams/genética , Estudio de Asociación del Genoma Completo , Proteómica , Enfermedades Raras , Estenosis Aórtica Supravalvular/genética , Estenosis Aórtica Supravalvular/metabolismo , Estenosis Aórtica Supravalvular/cirugía
7.
Am J Obstet Gynecol ; 230(3): 368.e1-368.e12, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37717890

RESUMEN

BACKGROUND: The 22q11.2 deletion syndrome is the most common microdeletion syndrome and is frequently associated with congenital heart disease. Prenatal diagnosis of 22q11.2 deletion syndrome is increasingly offered. It is unknown whether there is a clinical benefit to prenatal detection as compared with postnatal diagnosis. OBJECTIVE: This study aimed to determine differences in perinatal and infant outcomes between patients with prenatal and postnatal diagnosis of 22q11.2 deletion syndrome. STUDY DESIGN: This was a retrospective cohort study across multiple international centers (30 sites, 4 continents) from 2006 to 2019. Participants were fetuses, neonates, or infants with a genetic diagnosis of 22q11.2 deletion syndrome by 1 year of age with or without congenital heart disease; those with prenatal diagnosis or suspicion (suggestive ultrasound findings and/or high-risk cell-free fetal DNA screen for 22q11.2 deletion syndrome with postnatal confirmation) were compared with those with postnatal diagnosis. Perinatal management, cardiac and noncardiac morbidity, and mortality by 1 year were assessed. Outcomes were adjusted for presence of critical congenital heart disease, gestational age at birth, and site. RESULTS: A total of 625 fetuses, neonates, or infants with 22q11.2 deletion syndrome (53.4% male) were included: 259 fetuses were prenatally diagnosed (156 [60.2%] were live-born) and 122 neonates were prenatally suspected with postnatal confirmation, whereas 244 infants were postnatally diagnosed. In the live-born cohort (n=522), 1-year mortality was 5.9%, which did not differ between groups but differed by the presence of critical congenital heart disease (hazard ratio, 4.18; 95% confidence interval, 1.56-11.18; P<.001) and gestational age at birth (hazard ratio, 0.78 per week; 95% confidence interval, 0.69-0.89; P<.001). Adjusting for critical congenital heart disease and gestational age at birth, the prenatal cohort was less likely to deliver at a local community hospital (5.1% vs 38.2%; odds ratio, 0.11; 95% confidence interval, 0.06-0.23; P<.001), experience neonatal cardiac decompensation (1.3% vs 5.0%; odds ratio, 0.11; 95% confidence interval, 0.03-0.49; P=.004), or have failure to thrive by 1 year (43.4% vs 50.3%; odds ratio, 0.58; 95% confidence interval, 0.36-0.91; P=.019). CONCLUSION: Prenatal detection of 22q11.2 deletion syndrome was associated with improved delivery management and less cardiac and noncardiac morbidity, but not mortality, compared with postnatal detection.


Asunto(s)
Síndrome de DiGeorge , Cardiopatías Congénitas , Lactante , Recién Nacido , Embarazo , Femenino , Humanos , Masculino , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Estudios Retrospectivos , Diagnóstico Prenatal , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/genética , Atención Prenatal
8.
Brain Sci ; 13(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38002527

RESUMEN

POLR3B encodes the RPC2 subunit of RNA polymerase III. Pathogenic variants are associated with biallelic hypomyelinating leukodystrophy belonging to the POLR-related disorders. Recently, the association with dominant demyelinating neuropathy, classified as Charcot-Marie-Tooth syndrome type 1I (CMT1I), has been reported as well. Here we report on an additional patient presenting with developmental delay and generalized epilepsy, followed by the onset of mild pyramidal and cerebellar signs, vertical gaze palsy and subclinical demyelinating polyneuropathy. A new heterozygous de novo missense variant, c.1297C > G, p.Arg433Gly, in POLR3B was disclosed via trio-exome sequencing. In silico analysis confirms the hypothesis on the variant pathogenicity. Our research broadens both the genotypic and phenotypic spectrum of the autosomal-dominant POLR3B-related condition.

9.
Sci Rep ; 13(1): 18963, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923896

RESUMEN

Williams-Beuren syndrome (WBS) is a rare genetic neurodevelopmental disorder with multi-systemic manifestations. The evidence that most subjects with WBS face gastrointestinal (GI) comorbidities, have prompted us to carry out a metaproteomic investigation of their gut microbiota (GM) profile compared to age-matched healthy subjects (CTRLs). Metaproteomic analysis was carried out on fecal samples collected from 41 individuals with WBS, and compared with samples from 45 CTRLs. Stool were extracted for high yield in bacterial protein group (PG) content, trypsin-digested and analysed by nanoLiquid Chromatography-Mass Spectrometry. Label free quantification, taxonomic assignment by the lowest common ancestor (LCA) algorithm and functional annotations by COG and KEGG databases were performed. Data were statistically interpreted by multivariate and univariate analyses. A WBS GM functional dissimilarity respect to CTRLs, regardless age distribution, was reported. The alterations in function of WBSs GM was primarily based on bacterial pathways linked to carbohydrate transport and metabolism and energy production. Influence of diet, obesity, and GI symptoms was assessed, highlighting changes in GM biochemical patterns, according to WBS subsets' stratification. The LCA-derived ecology unveiled WBS-related functionally active bacterial signatures: Bacteroidetes related to over-expressed PGs, and Firmicutes, specifically the specie Faecalibacterium prausnitzii, linked to under-expressed PGs, suggesting a depletion of beneficial bacteria. These new evidences on WBS gut dysbiosis may offer novel targets for tailored interventions.


Asunto(s)
Microbioma Gastrointestinal , Síndrome de Williams , Humanos , Bacterias/genética , Firmicutes , Tracto Gastrointestinal
10.
J Med Genet ; 60(12): 1224-1234, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37586838

RESUMEN

BACKGROUND: KBG syndrome is caused by haploinsufficiency of ANKRD11 and is characterised by macrodontia of upper central incisors, distinctive facial features, short stature, skeletal anomalies, developmental delay, brain malformations and seizures. The central nervous system (CNS) and skeletal features remain poorly defined. METHODS: CNS and/or skeletal imaging were collected from molecularly confirmed individuals with KBG syndrome through an international network. We evaluated the original imaging and compared our results with data in the literature. RESULTS: We identified 53 individuals, 44 with CNS and 40 with skeletal imaging. Common CNS findings included incomplete hippocampal inversion and posterior fossa malformations; these were significantly more common than previously reported (63.4% and 65.9% vs 1.1% and 24.7%, respectively). Additional features included patulous internal auditory canal, never described before in KBG syndrome, and the recurrence of ventriculomegaly, encephalic cysts, empty sella and low-lying conus medullaris. We found no correlation between these structural anomalies and epilepsy or intellectual disability. Prevalent skeletal findings comprised abnormalities of the spine including scoliosis, coccygeal anomalies and cervical ribs. Hand X-rays revealed frequent abnormalities of carpal bone morphology and maturation, including a greater delay in ossification compared with metacarpal/phalanx bones. CONCLUSION: This cohort enabled us to describe the prevalence of very heterogeneous neuroradiological and skeletal anomalies in KBG syndrome. Knowledge of the spectrum of such anomalies will aid diagnostic accuracy, improve patient care and provide a reference for future research on the effects of ANKRD11 variants in skeletal and brain development.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Discapacidad Intelectual , Anomalías Dentarias , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/diagnóstico por imagen , Enfermedades del Desarrollo Óseo/genética , Anomalías Dentarias/diagnóstico por imagen , Anomalías Dentarias/genética , Facies , Fenotipo , Proteínas Represoras/genética , Factores de Transcripción , Neuroimagen
11.
Clin Genet ; 104(5): 528-541, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37455656

RESUMEN

CTNNB1 [OMIM *116806] encodes ß-catenin, an integral part of the cadherin/catenin complex, which functions as effector of Wnt signaling. CTNNB1 is highly expressed in brain as well as in other tissues, including heart. Heterozygous CTNNB1 pathogenic variations are associated with a neurodevelopmental disorder characterized by spastic diplegia and visual defects (NEDSDV) [OMIM #615075], featuring psychomotor delay, intellectual disability, behavioral disturbances, movement disorders, visual defects and subtle facial and somatic features. We report on a new series of 19 NEDSDV patients (mean age 10.3 years), nine of whom bearing novel CTNNB1 variants. Notably, five patients showed congenital heart anomalies including absent pulmonary valve with intact ventricular septum, atrioventricular canal with hypoplastic aortic arch, tetralogy of Fallot, and mitral valve prolapse. We focused on the cardiac phenotype characterizing such cases and reviewed the congenital heart defects in previously reported NEDSDV patients. While congenital heart defects had occasionally been reported so far, the present findings configure a higher rate of cardiac anomalies, suggesting dedicated heart examination to NEDSDV clinical management.


Asunto(s)
Cardiopatías Congénitas , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Niño , beta Catenina/genética , Cardiopatías Congénitas/diagnóstico , Síndrome , Discapacidad Intelectual/genética
12.
Sci Rep ; 13(1): 9797, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328513

RESUMEN

Williams-Beuren syndrome (WBS) is a multisystem genetic disease caused by the deletion of a region of 1.5-1.8 Mb on chromosome 7q11.23. The elastin gene seems to account for several comorbidities and distinct clinical features such including cardiovascular disease, connective tissue abnormalities, growth retardation, and gastrointestinal (GI) symptoms. Increasing evidence points to alterations in gut microbiota composition as a primary or secondary cause of some GI or extra-intestinal characteristics. In this study, we performed the first exploratory analysis of gut microbiota in WBS patients compared to healthy subjects (CTRLs) using 16S rRNA amplicon sequencing, by investigating the gut dysbiosis in relation to diseases and comorbidities. We found that patients with WBS have significant dysbiosis compared to age-matched CTRLs, characterized by an increase in proinflammatory bacteria such as Pseudomonas, Gluconacetobacter and Eggerthella, and a reduction of anti-inflammatory bacteria including Akkermansia and Bifidobacterium. Microbial biomarkers associated with weight gain, GI symptoms and hypertension were identified. Gut microbiota profiling could represent a new tool that characterise intestinal dysbiosis to complement the clinical management of these patients. In particular, the administration of microbial-based treatments, alongside traditional therapies, could help in reducing or preventing the burden of these symptoms and improve the quality of life of these patients.


Asunto(s)
Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Síndrome de Williams , Humanos , Síndrome de Williams/genética , Síndrome de Williams/diagnóstico , Disbiosis/microbiología , ARN Ribosómico 16S/genética , Calidad de Vida , Enfermedades Gastrointestinales/complicaciones
13.
Biomolecules ; 13(5)2023 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-37238595

RESUMEN

Neurofibromatosis type 1 is an autosomal-dominant condition caused by NF1 gene inactivation. Clinical diagnosis is corroborated by genetic tests on gDNA and cDNA, which are inconclusive in approximately 3-5% of cases. Genomic DNA approaches may overlook splicing-affecting intronic variants and structural rearrangements, especially in regions enriched in repetitive sequences. On the other hand, while cDNA-based methods provide direct information about the effect of a variant on gene transcription, they are hampered by non-sense-mediated mRNA decay and skewed or monoallelic expression. Moreover, analyses on gene transcripts in some patients do not allow tracing back to the causative event, which is crucial for addressing genetic counselling, prenatal monitoring, and developing targeted therapies. We report on a familial NF1, caused by an insertion of a partial LINE-1 element inside intron 15, leading to exon 15 skipping. Only a few cases of LINE-1 insertion have been reported so far, hampering gDNA studies because of their size. Often, they result in exon skipping, and their recognition of cDNA may be difficult. A combined approach, based on Optical Genome Mapping, WGS, and cDNA studies, enabled us to detect the LINE-1 insertion and test its effects. Our results improve knowledge of the NF1 mutational spectrum and highlight the importance of custom-built approaches in undiagnosed patients.


Asunto(s)
Neurofibromatosis 1 , Embarazo , Femenino , Humanos , Neurofibromatosis 1/genética , Neurofibromatosis 1/diagnóstico , Intrones/genética , ADN Complementario , Elementos de Nucleótido Esparcido Largo/genética , Mutación
14.
Front Pediatr ; 11: 1111527, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063679

RESUMEN

Background: Despite the latest advances in prenatal diagnosis and postnatal embolization procedures, intracranial arteriovenous shunts (AVSs) are still associated with high mortality and morbidity rates. Our aim was to evaluate the presentation and clinical course, the neurodevelopmental outcome, and the genetic findings of neonates with AVSs. Methods: In this retrospective observational study, medical records of neonates with cerebral AVSs admitted to our hospital from January 2020 to July 2022 were revised. In particular, we evaluated neuroimaging characteristics, endovascular treatment, neurophysiological features, neurodevelopmental outcomes, and genetic findings. Results: We described the characteristics of 11 patients with AVSs. Ten infants (90.9%) required embolization during the first three months of life. In 5/9 infants, pathological electroencephalography findings were observed; of them, two patients presented seizures. Eight patients performed Median Nerve Somatosensory Evoked Potentials (MN-SEPs): of them, six had an impaired response. We found normal responses at Visual Evoked Potentials and Brainstem Auditory Evoked Potentials. Eight patients survived (72.7%) and were enrolled in our multidisciplinary follow-up program. Of them, 7/8 completed the Bayley-III Scales at 6 months of corrected age: none of them had cognitive and language delays; conversely, a patient had a moderate delay on the Motor scale. The remaining survivor patient developed cerebral palsy and could not undergo Bayley-III evaluation because of the severe psychomotor delay. From the genetic point of view, we found a novel pathogenic variant in the NOTCH3 gene and three additional genomic defects of uncertain pathogenicity. Conclusion: We propose SEPs as an ancillary test to discern the most vulnerable infants at the bedside, particularly to identify possible future motor impairment in follow-up. The early identification of a cognitive or motor delay is critical to intervene with personalized rehabilitation treatment and minimize future impairment promptly. Furthermore, the correct interpretation of identified genetic variants could provide useful information, but further studies are needed to investigate the role of these variants in the pathogenesis of AVSs.

15.
Nat Commun ; 14(1): 2026, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041148

RESUMEN

Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown. A total of 670 patients belonging to unrelated pedigrees with European and Chinese ancestry with CFM, are investigated. We identify 18 likely pathogenic variants in 21 probands (3.1%) in FOXI3. Biochemical experiments on transcriptional activity and subcellular localization of the likely pathogenic FOXI3 variants, and knock-in mouse studies strongly support the involvement of FOXI3 in CFM. Our findings indicate autosomal dominant inheritance with reduced penetrance, and/or autosomal recessive inheritance. The phenotypic expression of the FOXI3 variants is variable. The penetrance of the likely pathogenic variants in the seemingly dominant form is reduced, since a considerable number of such variants in affected individuals were inherited from non-affected parents. Here we provide suggestive evidence that common variation in the FOXI3 allele in trans with the pathogenic variant could modify the phenotypic severity and accounts for the incomplete penetrance.


Asunto(s)
Síndrome de Goldenhar , Animales , Ratones , Síndrome de Goldenhar/patología , Asimetría Facial , Linaje , Factores de Transcripción Forkhead
16.
Am J Hum Genet ; 110(4): 663-680, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36965478

RESUMEN

The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al ADN , Paraparesia Espástica , Factores de Transcripción , Paraparesia Espástica/genética , Humanos , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Células HeLa , Isoformas de Proteínas/genética , RNA-Seq , Masculino , Femenino , Linaje , Alelos , Lactante , Preescolar , Niño , Adolescente , Estructura Secundaria de Proteína , ARN Nuclear Pequeño/genética
17.
Eur J Hum Genet ; 31(4): 479-484, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599940

RESUMEN

Deleterious variants of DYNC2H1 gene are associated with a wide spectrum of skeletal ciliopathies (SC). We used targeted parallel sequencing to analyze 25 molecularly unsolved families with different SCs. Deleterious DYNC2H1 variants were found in six sporadic patients and two monozygotic (MZ) twins. Clinical diagnoses included short rib-polydactyly type 3 in two cases, and asphyxiating thoracic dystrophy (ATD) in one case. Remarkably, clinical diagnosis fitted with EvC, mixed ATD/EvC and short rib-polydactyly/EvC phenotypes in three sporadic patients and the MZ twins. EvC/EvC-like features always occurred in compound heterozygotes sharing a previously unreported splice site change (c.6140-5A>G) or compound heterozygotes for two missense variants. These results expand the DYNC2H1 mutational repertoire and its clinical spectrum, suggesting that EvC may be occasionally caused by DYNC2H1 variants presumably acting as hypomorphic alleles.


Asunto(s)
Ciliopatías , Dineínas Citoplasmáticas , Síndrome de Ellis-Van Creveld , Polidactilia , Humanos , Ciliopatías/diagnóstico , Ciliopatías/genética , Dineínas Citoplasmáticas/genética , Síndrome de Ellis-Van Creveld/diagnóstico , Síndrome de Ellis-Van Creveld/genética , Mutación , Polidactilia/genética
18.
Genes (Basel) ; 14(1)2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36672887

RESUMEN

Chromosome 9p deletion syndrome is a rare autosomal dominant disorder presenting with a broad spectrum of clinical features, including congenital heart defects (CHDs). To date, studies focused on a deep characterization of cardiac phenotype and function associated with this condition are lacking. We conducted a multicentric prospective observational study on a cohort of 10 patients with a molecular diagnosis of 9p deletion syndrome, providing a complete cardiological assessment through conventional echocardiography and tissue Doppler imaging echo modality. As a result, we were able to demonstrate that patients with 9p deletion syndrome without major CHDs may display subclinical cardiac structural changes and left-ventricle systolic and diastolic dysfunction. Albeit needing validation in a larger cohort, our findings support the idea that a complete cardiac assessment should be performed in patients with 9p deletion syndrome and should be integrated in the context of a long-term follow-up.


Asunto(s)
Anomalías Múltiples , Humanos , Anomalías Múltiples/genética , Síndrome , Deleción Cromosómica , Fenotipo , Estudios Observacionales como Asunto , Estudios Multicéntricos como Asunto
19.
Eur J Med Genet ; 66(1): 104651, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36404488

RESUMEN

BACKGROUND: Diagnosis and treatment of 22q11.2 deletion syndrome (22q11.2DS) have led to improved life expectancy and achievement of adulthood. Limited data on long-term outcomes reported an increased risk of premature death for cardiovascular causes, even without congenital heart disease (CHD). The aim of this study was to assess the cardiac function in adolescents and young adults with 22q11.2DS without CHDs. METHODS: A total of 32 patients (20M, 12F; mean age 26.00 ± 8.08 years) and a healthy control group underwent transthoracic echocardiography, including Tissue Doppler Imaging (TDI) and 2-dimensional Speckle Tracking Echocardiography (2D-STE). RESULTS: Compared to controls, 22q11.2DS patients showed a significant increase of the left ventricle (LV) diastolic and systolic diameters (p = 0.029 and p = 0.035 respectively), interventricular septum thickness (p = 0.005), LV mass index (p < 0.001) and aortic root size (p < 0.001). 2D-STE analysis revealed a significant reduction of LV global longitudinal strain (p < 0.001) in 22q11.2DS than controls. Moreover, several LV diastolic parameters were significantly different between groups. CONCLUSIONS: Our results suggest that an echocardiographic follow-up in 22q11.2DS patients without CHDs can help to identify subclinical impairment of the LV and evaluate a potential progression of aortic root dilation over time, improving outcomes, reducing long-term complications and allowing for a better prognosis.


Asunto(s)
Síndrome de DiGeorge , Cardiopatías Congénitas , Humanos , Adulto Joven , Adolescente , Adulto , Ecocardiografía/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Pronóstico
20.
Dev Med Child Neurol ; 65(5): 712-720, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36196002

RESUMEN

AIM: To illustrate the epileptological and electroencephalographic (EEG) characteristics of a cohort of patients with KBG syndrome and epilepsy. METHOD: Clinical history, age at epilepsy onset, seizure types, EEG findings, duration of epilepsy, and response to therapies were retrospectively reviewed in 11 patients (three females, eight males) with KBG syndrome. RESULTS: All detected genetic mutations were pathogenic and affected the C-terminal region at exon 9 of ANKRD11. One patient had 16q24.3 microdeletion including the ANKRD11 gene. Mean age at onset was 67 months. Epilepsy type was focal in five patients and generalized in four. Two patients had developmental and epileptic encephalopathies. Seizure freedom was obtained after a period varying between 15 days and 6 years. INTERPRETATION: In our patients, epilepsy appeared to respond well to treatment and, in some cases, to be self-limiting. The molecular characteristics of our patients' genetic abnormalities did not point towards any specific epilepsy hot spot. Epilepsy should be considered in the diagnostic work-up of patients with KBG syndrome. WHAT THIS PAPER ADDS: Some of the epilepsy types of KBG syndrome appear to be self-remitting. The epilepsy phenotypes associated with KBG syndrome are quite variable.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Epilepsia Generalizada , Discapacidad Intelectual , Anomalías Dentarias , Masculino , Femenino , Humanos , Anomalías Múltiples/diagnóstico , Discapacidad Intelectual/diagnóstico , Enfermedades del Desarrollo Óseo/diagnóstico , Enfermedades del Desarrollo Óseo/genética , Anomalías Dentarias/diagnóstico , Anomalías Dentarias/genética , Facies , Estudios Retrospectivos , Proteínas Represoras/genética , Deleción Cromosómica , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA