RESUMEN
Genome-wide association studies have identified SH2B3 as an important non-MHC gene for islet autoimmunity and type 1 diabetes (T1D). In this study, we found a single SH2B3 haplotype significantly associated with increased risk for human T1D, and this haplotype carries the single nucleotide variant rs3184504*T in SH2B3. To better characterize the role of SH2B3 in T1D, we used mouse modeling and found a T cell-intrinsic role for SH2B3 regulating peripheral tolerance. SH2B3 deficiency had minimal effect on TCR signaling or proliferation across antigen doses, yet enhanced cell survival and cytokine signaling including common gamma chain-dependent and interferon-gamma receptor signaling. SH2B3 deficient CD8+T cells showed augmented STAT5-MYC and effector-related gene expression partially reversed with blocking autocrine IL-2 in culture. Using the RIP-mOVA model, we found CD8+ T cells lacking SH2B3 promoted early islet destruction and diabetes without requiring CD4+ T cell help. SH2B3-deficient cells demonstrated increased survival post-transfer compared to control cells despite a similar proliferation profile in the same host. Next, we created a spontaneous NOD .Sh2b3 -/- mouse model and found markedly increased incidence and accelerated T1D across sexes. Collectively, these studies identify SH2B3 as a critical mediator of peripheral T cell tolerance limiting the T cell response to self-antigens. Article Highlights: The rs3184504 polymorphism, encoding a hypomorphic variant of the negative regulator SH2B3, strongly associates with T1D.SH2B3 deficiency results in hypersensitivity to cytokines, including IL-2, in murine CD4+ and CD8+ T cells.SH2B3 deficient CD8+ T cells exhibit a comparable transcriptome to wild-type CD8+ T cells at baseline, but upon antigen stimulation SH2B3 deficient cells upregulate genes characteristic of enhanced JAK/STAT signaling and effector functions.We found a T-cell intrinsic role of SH2B3 leading to severe islet destruction in an adoptive transfer murine T1D model, while global SH2B3 deficiency accelerated spontaneous NOD diabetes across sexes.
RESUMEN
Mycobacterium tuberculosis (Mtb) exposure leads to a range of outcomes including clearance, latent TB infection (LTBI), and pulmonary tuberculosis (TB). Some heavily exposed individuals resist tuberculin skin test (TST) and interferon-gamma (IFNγ) release assay (IGRA) conversion (RSTR), which suggests that they employ IFNγ-independent mechanisms of Mtb control. Here, we compare monocyte epigenetic profiles of RSTR and LTBI from a Ugandan household contact cohort. Chromatin accessibility did not differ between uninfected RSTR and LTBI monocytes. By contrast, methylation significantly differed at 174 CpG sites and across 63 genomic regions. Consistent with previous transcriptional findings in this cohort, differential methylation was enriched in lipid- and cholesterol-associated pathways including the genes APOC3, KCNQ1, and PLA2G3. In addition, methylation was enriched in Hippo signaling, which is associated with cholesterol homeostasis and includes CIT and SHANK2. Lipid export and Hippo signaling pathways were also associated with gene expression in response to Mtb in RSTR as well as IFN stimulation in monocyte-derived macrophages (MDMs) from an independent healthy donor cohort. Moreover, serum-derived high-density lipoprotein from RSTR had elevated ABCA1-mediated cholesterol efflux capacity (CEC) compared to LTBI. Our findings suggest that resistance to TST/IGRA conversion is linked to regulation of lipid accumulation in monocytes, which could facilitate early Mtb clearance among RSTR subjects through IFNγ-independent mechanisms.IMPORTANCETuberculosis (TB) remains an enduring global health challenge with millions of deaths and new cases each year. Despite recent advances in TB treatment, we lack an effective vaccine or a durable cure. While heavy exposure to Mycobacterium tuberculosis often results in latent TB latent infection (LTBI), subpopulations exist that are either resistant to infection or contain Mtb with interferon-gamma (IFNγ)-independent mechanisms not indicative of LTBI. These resisters provide an opportunity to investigate the mechanisms of TB disease and discover novel therapeutic targets. Here, we compare monocyte epigenetic profiles of RSTR and LTBI from a Ugandan household contact cohort. We identify methylation signatures in host lipid and cholesterol pathways with potential relevance to early TB clearance before the sustained IFN responses indicative of LTBI. This adds to a growing body of literature linking TB disease outcomes to host lipids.
Asunto(s)
Epigénesis Genética , Tuberculosis Latente , Metabolismo de los Lípidos , Mycobacterium tuberculosis , Humanos , Metabolismo de los Lípidos/genética , Tuberculosis Latente/inmunología , Tuberculosis Latente/microbiología , Tuberculosis Latente/genética , Tuberculosis Latente/metabolismo , Masculino , Adulto , Femenino , Prueba de Tuberculina , Ensayos de Liberación de Interferón gamma , Monocitos/metabolismo , Monocitos/inmunología , Metilación de ADN , Uganda/epidemiología , Estudios de CohortesRESUMEN
Alveolar macrophages (AMs) and recruited monocyte-derived macrophages (MDMs) mediate early lung immune responses to Mycobacterium tuberculosis. Differences in the response of these distinct cell types are poorly understood and may provide insight into mechanisms of tuberculosis pathogenesis. The objective of this study was to determine whether M. tuberculosis induces unique and essential antimicrobial pathways in human AMs compared with MDMs. Using paired human AMs and 5-d MCSF-derived MDMs from six healthy volunteers, we infected cells with M. tuberculosis H37Rv for 6 h, isolated RNA, and analyzed transcriptomic profiles with RNA sequencing. We found 681 genes that were M. tuberculosis dependent in AMs compared with MDMs and 4538 that were M. tuberculosis dependent in MDMs, but not AMs (false discovery rate [FDR] < 0.05). Using hypergeometric enrichment of DEGs in Broad Hallmark gene sets, we found that type I and II IFN Response were the only gene sets selectively induced in M. tuberculosis-infected AM (FDR < 0.05). In contrast, MYC targets, unfolded protein response and MTORC1 signaling, were selectively enriched in MDMs (FDR < 0.05). IFNA1, IFNA8, IFNE, and IFNL1 were specifically and highly upregulated in AMs compared with MDMs at baseline and/or after M. tuberculosis infection. IFNA8 modulated M. tuberculosis-induced proinflammatory cytokines and, compared with other IFNs, stimulated unique transcriptomes. Several DNA sensors and IFN regulatory factors had higher expression at baseline and/or after M. tuberculosis infection in AMs compared with MDMs. These findings demonstrate that M. tuberculosis infection induced unique transcriptional responses in human AMs compared with MDMs, including upregulation of the IFN response pathway and specific DNA sensors.
Asunto(s)
Macrófagos Alveolares , Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/inmunología , Macrófagos Alveolares/inmunología , Transcriptoma , Macrófagos/inmunología , Tuberculosis/inmunología , Células Cultivadas , Transducción de Señal/inmunología , Monocitos/inmunologíaRESUMEN
Mycobacterium tuberculosis (Mtb) exposure leads to a range of outcomes including clearance, latent TB infection (LTBI), and pulmonary tuberculosis (TB). Some heavily exposed individuals resist tuberculin skin test (TST) and interferon gamma release assay (IGRA) conversion (RSTR), which suggests that they employ IFNγ-independent mechanisms of Mtb control. Here, we compare monocyte epigenetic profiles of RSTR and LTBI from a Ugandan household contact cohort. Chromatin accessibility did not differ between uninfected RSTR and LTBI monocytes. In contrast, methylation significantly differed at 174 CpG sites and across 63 genomic regions. Consistent with previous transcriptional findings in this cohort, differential methylation was enriched in lipid and cholesterol associated pathways including in the genes APOC3, KCNQ1, and PLA2G3. In addition, methylation was enriched in Hippo signaling, which is associated with cholesterol homeostasis and includes CIT and SHANK2. Lipid export and Hippo signaling pathways were also associated with gene expression in response to Mtb in RSTR as well as IFN stimulation in monocyte-derived macrophages (MDMs) from an independent healthy donor cohort. Moreover, serum-derived HDL from RSTR had elevated ABCA1-mediated cholesterol efflux capacity (CEC) compared to LTBI. Our findings suggest that resistance to TST/IGRA conversion is linked to regulation of lipid accumulation in monocytes, which could facilitate early Mtb clearance among RSTR subjects through IFNγ-independent mechanisms.
RESUMEN
A polymorphism causing deficiencies in Toll-interacting protein (TOLLIP), an inhibitory adaptor protein affecting endosomal trafficking, is associated with increased tuberculosis (TB) risk. It is, however, unclear how TOLLIP affects TB pathogenesis. Here we show that TB severity is increased in Tollip-/- mice, characterized by macrophage- and T cell-driven inflammation, foam cell formation and lipid accumulation. Tollip-/- alveolar macrophages (AM) specifically accumulated lipid and underwent necrosis. Transcriptional and protein analyses of Mycobacterium tuberculosis (Mtb)-infected, Tollip-/- AM revealed increased EIF2 signalling and downstream upregulation of the integrated stress response (ISR). These phenotypes were linked, as incubation of the Mtb lipid mycolic acid with Mtb-infected Tollip-/- AM activated the ISR and increased Mtb replication. Correspondingly, the ISR inhibitor, ISRIB, reduced Mtb numbers in AM and improved Mtb control, overcoming the inflammatory phenotype. In conclusion, targeting the ISR offers a promising target for host-directed anti-TB therapy towards improved Mtb control and reduced immunopathology.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Macrófagos Alveolares/microbiología , Tuberculosis/microbiología , Mycobacterium tuberculosis/fisiología , Macrófagos/microbiología , Lípidos , Péptidos y Proteínas de Señalización Intracelular/metabolismoRESUMEN
Introduction: The heterogeneity of outcomes after Mycobacterium tuberculosis (Mtb) exposure is a conundrum associated with millennia of host-pathogen co-evolution. We hypothesized that human myeloid cells contain genetically encoded, Mtb-specific responses that regulate critical steps in tuberculosis (TB) pathogenesis. Methods: We mapped genome-wide expression quantitative trait loci (eQTLs) in Mtb-infected monocytes with RNAseq from 80 Ugandan household contacts of pulmonary TB cases to identify monocyte-specific, Mtb-dependent eQTLs and their association with cytokine expression and clinical resistance to tuberculin skin test (TST) and interferon-γ release assay (IGRA) conversion. Results: cis-eQTLs (n=1,567) were identified in Mtb-infected monocytes (FDR<0.01), including 29 eQTLs in 16 genes which were Mtb-dependent (significant for Mtb:genotype interaction [FDR<0.1], but not classified as eQTL in uninfected condition [FDR≥0.01]). A subset of eQTLs were associated with Mtb-induced cytokine expression (n=8) and/or clinical resistance to TST/IGRA conversion (n=1). Expression of BMP6, an Mtb-dependent eQTL gene, was associated with IFNB1 induction in Mtb-infected and DNA ligand-induced cells. Network and enrichment analyses identified fatty acid metabolism as a pathway associated with eQTL genes. Discussion: These findings suggest that monocyte genes contain Mtb-dependent eQTLs, including a subset associated with cytokine expression and/or clinical resistance to TST/IGRA conversion, providing insight into immunogenetic pathways regulating susceptibility to Mtb infection and TB pathogenesis.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , Monocitos/metabolismo , Sitios de Carácter Cuantitativo , Tuberculosis/genética , Citocinas/metabolismoRESUMEN
BACKGROUND: Accumulating evidence indicates that asthma has systemic effects and affects brain function. Although airway inflammation is proposed to initiate afferent communications with the brain, the signaling pathways have not been established. OBJECTIVE: We sought to identify the cellular and molecular pathways involved in afferent lung-brain communication during airway inflammation in asthma. METHODS: In 23 adults with mild asthma, segmental bronchial provocation with allergen (SBP-Ag) was used to provoke airway inflammation and retrieve bronchoalveolar lavage fluid for targeted protein analysis and RNA sequencing to determine gene expression profiles. Neural responses to emotional cues in nodes of the salience network were assessed with functional magnetic resonance imaging at baseline and 48 hours after SBP-Ag. RESULTS: Cell deconvolution and gene coexpression network analysis identified 11 cell-associated gene modules that changed in response to SBP-Ag. SBP-Ag increased bronchoalveolar lavage eosinophils and expression of an eosinophil-associated module enriched for genes related to TH17-type inflammation (eg, IL17A), as well as cell proliferation in lung and brain (eg, NOTCH1, VEGFA, and LIF). Increased expression of genes in this module, as well as several TH17-type inflammation-related proteins, was associated with an increase from baseline in salience network reactivity. CONCLUSIONS: Our results identify a specific inflammatory pathway linking asthma-related airway inflammation and emotion-related neural function. Systemically, TH17-type inflammation has been implicated in both depression and neuroinflammation, with impacts on long-term brain health. Thus, our data emphasize that inflammation in the lung in asthma may have profound effects outside of the lung that may be targetable with novel therapeutic approaches.
Asunto(s)
Asma , Trastornos Mentales , Adulto , Humanos , Enfermedades Neuroinflamatorias , Asma/metabolismo , Pulmón/patología , Eosinófilos/patología , Líquido del Lavado Bronquioalveolar , Inflamación , EncéfaloRESUMEN
OBJECTIVE: To determine whether Mycobacterium tuberculosis (Mtb)-induced monocyte transcriptional responses differ in people with HIV (PWH) who do (RSTR) or do not (LTBI) resist tuberculin skin test/interferon-γ (IFN-γ) release assay (TST/IGRA) conversion after exposure. DESIGN: We compared ex-vivo Mtb-induced monocyte transcriptional responses in a Ugandan tuberculosis (TB) household contact study of RSTR and LTBI individuals among PWH. METHODS: Monocytes were isolated from peripheral blood mononuclear cells from 19 household contacts of pulmonary TB patients, and their transcriptional profiles were measured with RNA-Seq after a 6âh infection with Mtb (H37Rv) or media. Differentially expressed genes (DEGs) were identified by a linear mixed effects model and pathways by gene set enrichment analysis that compared RSTR and LTBI phenotypes with and without Mtb stimulation. RESULTS: Among PWH, we identified 8341 DEGs that were dependent on Mtb stimulation [false discovery rate (FDR) <0.01]. Of these, 350 were not significant (FDR >0.2) in individuals without HIV. Additionally, we found 26 genes that were differentially expressed between RSTR and LTBI monocytes in PWH, including 20 which were Mtb-dependent (FDR <0.2). In unstimulated monocytes, several gene sets [TGF-ß signaling, TNF-α signaling via NF-κB, NOTCH signaling, coagulation, and epithelial mesenchymal transition (EMT)] were enriched in RSTR relative to LTBI monocytes (FDR <0.1). These patterns were not observed in individuals without HIV. CONCLUSION: RSTR monocytes in PWH show different gene expressions in response to Mtb infection when compared with those with LTBI and RSTR without HIV. These differential expression patterns are enriched in inflammatory pathways.
Asunto(s)
Infecciones por VIH , Tuberculosis Latente , Mycobacterium tuberculosis , Humanos , Ensayos de Liberación de Interferón gamma , Prueba de Tuberculina , Monocitos , Tuberculosis Latente/diagnóstico , Leucocitos Mononucleares , Infecciones por VIH/complicacionesRESUMEN
The heterogeneity of outcomes after Mycobacterium tuberculosis (Mtb) exposure is a conundrum associated with millennia of host-pathogen co-evolution. We hypothesized that human myeloid cells contain genetically encoded, Mtb-specific responses that regulate critical steps in tuberculosis (TB) pathogenesis. We mapped genome-wide expression quantitative trait loci (eQTLs) in Mtb-infected monocytes with RNAseq from 80 Ugandan household contacts of pulmonary TB cases to identify monocyte-specific, Mtb-dependent eQTLs and their association with cytokine expression and clinical resistance to tuberculin skin test (TST) and interferon-γ release assay (IGRA) conversion. cis-eQTLs (n=1,567) were identified in Mtb-infected monocytes (FDR<0.01), including 29 eQTLs in 16 genes which were Mtb-dependent (significant for Mtb:genotype interaction [FDR<0.1], but not classified as eQTL in media condition [FDR≥0.01]). A subset of eQTLs were associated with Mtb-induced cytokine expression (n=8) and/or clinical resistance to TST/IGRA conversion (n=1). Expression of BMP6, an Mtb-dependent eQTL gene, was associated with IFNB1 induction in Mtb-infected and DNA ligand-induced cells. Network and enrichment analyses identified fatty acid metabolism as a pathway associated with eQTL genes. These findings suggest that monocyte genes contain Mtb-dependent eQTLs, including a subset associated with cytokine expression and/or clinical resistance to TST/IGRA conversion, providing insight into immunogenetic pathways regulating susceptibility to Mtb infection and TB pathogenesis.
RESUMEN
MOTIVATION: The identification of differentially expressed genes (DEGs) from transcriptomic datasets is a major avenue of research across diverse disciplines. However, current bioinformatic tools do not support covariance matrices in DEG modeling. Here, we introduce kimma (Kinship In Mixed Model Analysis), an open-source R package for flexible linear mixed effects modeling including covariates, weights, random effects, covariance matrices, and fit metrics. RESULTS: In simulated datasets, kimma detects DEGs with similar specificity, sensitivity, and computational time as limma unpaired and dream paired models. Unlike other software, kimma supports covariance matrices as well as fit metrics like Akaike information criterion (AIC). Utilizing genetic kinship covariance, kimma revealed that kinship impacts model fit and DEG detection in a related cohort. Thus, kimma equals or outcompetes current DEG pipelines in sensitivity, computational time, and model complexity. AVAILABILITY AND IMPLEMENTATION: Kimma is freely available on GitHub https://github.com/BIGslu/kimma with an instructional vignette at https://bigslu.github.io/kimma_vignette/kimma_vignette.html.
Asunto(s)
Perfilación de la Expresión Génica , Programas Informáticos , Humanos , RNA-Seq , Análisis de Secuencia de ARN , Modelos LinealesRESUMEN
BACKGROUND: A mechanistic understanding of uncommon immune outcomes such as resistance to infection has led to the development of novel therapies. Using gene level analytic methods, we previously found distinct monocyte transcriptional responses associated with resistance to Mycobacterium tuberculosis (Mtb) infection defined as persistently negative tuberculin skin test (TST) and interferon gamma release assay (IGRA) reactivity among highly exposed contacts (RSTR phenotype). OBJECTIVE: Using transcript isoform analyses, we aimed to identify novel RSTR-associated genes hypothesizing that previous gene-level differential expression analysis obscures isoform-specific differences that contribute to phenotype. MATERIALS AND METHODS: Monocytes from 49 RSTR versus 52 subjects with latent Mtb infection (LTBI) were infected with M. tuberculosis (H37Rv) or left unstimulated (media) prior to RNA isolation and sequencing. RSTR-associated gene expression was then identified using differential transcript isoform analysis. RESULTS: We identified 81 differentially expressed transcripts (DETs) in 70 genes (FDR <0.05) comparing RSTR and LTBI phenotypes with the majority (n = 79 DETs) identified under Mtb-stimulated conditions. Seventeen of these genes were previously identified with gene-level bulk RNAseq analyses including genes in the IFNγ response that had increased expression among LTBI subjects, findings consistent with a clinical phenotype based on IGRA reactivity. Among the subset of 23 genes with positive differential expression among Mtb-infected RSTR monocytes, 13 were not previously identified. These novel DET genes included PDE4A and ZEB2, which each had multiple DETs with higher expression among RSTR subjects, and ACSL4 and GAPDH that each had a single transcript isoform associated with RSTR. CONCLUSION AND LIMITATIONS: Transcript isoform-specific analyses identify transcriptional associations, such as those associated with resistance to TST/IGRA conversion, that are obscured when using gene-level approaches. These findings should be validated with additional RSTR cohorts and whether the newly identified candidate resistance genes directly influence the monocyte Mtb response requires functional study.
Asunto(s)
Infección Latente , Tuberculosis Latente , Mycobacterium tuberculosis , Humanos , Ensayos de Liberación de Interferón gamma/métodos , Prueba de Tuberculina/métodos , Tuberculosis Latente/diagnóstico , Tuberculosis Latente/genética , Tuberculosis Latente/complicaciones , FenotipoRESUMEN
BACKGROUND: Frequent asthma exacerbators, defined as those experiencing more than 1 hospitalization in a year for an asthma exacerbation, represent an important subgroup of individuals with asthma. However, this group remains poorly defined and understudied in children. OBJECTIVE: Our aim was to determine the molecular mechanisms underlying asthma pathogenesis and exacerbation frequency. METHODS: We performed RNA sequencing of upper airway cells from both frequent and nonfrequent exacerbators enrolled in the Ohio Pediatric Asthma Repository. RESULTS: Through molecular network analysis, we found that nonfrequent exacerbators display an increase in modules enriched for immune system processes, including type 2 inflammation and response to infection. In contrast, frequent exacerbators showed expression of modules enriched for nervous system processes, such as synaptic formation and axonal outgrowth. CONCLUSION: These data suggest that the upper airway of frequent exacerbators undergoes peripheral nervous system remodeling, representing a novel mechanism underlying pediatric asthma exacerbation.
Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Niño , Transcriptoma , Asma/genética , Inflamación , Nariz , Progresión de la EnfermedadRESUMEN
BACKGROUND: Mast cells (MCs) within the airway epithelium in asthma are closely related to airway dysfunction, but cross talk between airway epithelial cells (AECs) and MCs in asthma remains incompletely understood. Human rhinovirus (RV) infections are key triggers for asthma progression, and AECs from individuals with asthma may have dysregulated antiviral responses. OBJECTIVE: We utilized primary AECs in an ex vivo coculture model system to examine cross talk between AECs and MCs after epithelial rhinovirus infection. METHODS: Primary AECs were obtained from 11 children with asthma and 10 healthy children, differentiated at air-liquid interface, and cultured in the presence of laboratory of allergic diseases 2 (LAD2) MCs. AECs were infected with rhinovirus serogroup A 16 (RV16) for 48 hours. RNA isolated from both AECs and MCs underwent RNA sequencing. Direct effects of epithelial-derived interferons on LAD2 MCs were examined by real-time quantitative PCR. RESULTS: MCs increased expression of proinflammatory and antiviral genes in AECs. AECs demonstrated a robust antiviral response after RV16 infection that resulted in significant changes in MC gene expression, including upregulation of genes involved in antiviral responses, leukocyte activation, and type 2 inflammation. Subsequent ex vivo modeling demonstrated that IFN-ß induces MC type 2 gene expression. The effects of AEC donor phenotype were small relative to the effects of viral infection and the presence of MCs. CONCLUSIONS: There is significant cross talk between AECs and MCs, which are present in the epithelium in asthma. Epithelial-derived interferons not only play a role in viral suppression but also further alter MC immune responses including specific type 2 genes.
Asunto(s)
Asma , Infecciones por Enterovirus , Infecciones por Picornaviridae , Niño , Humanos , Interferones , Rhinovirus/fisiología , Mastocitos/metabolismo , Epitelio/metabolismo , Células Epiteliales , Antivirales/farmacología , InmunidadRESUMEN
Immunological mechanisms of susceptibility to nontuberculous mycobacterial (NTM) disease are poorly understood. To understand NTM pathogenesis, we evaluated innate and antigen-specific adaptive immune responses to Mycobacterium avium complex (MAC) in asymptomatic individuals with a previous history of MAC lung disease (MACDZ). We hypothesized that Mav-specific immune responses are associated with susceptibility to MAC lung disease. We measured MAC-, NTM-, or MAC/Mtb-specific T-cell responses by cytokine production, expression of surface markers, and analysis of global gene expression in 27 MACDZ individuals and 32 healthy controls. We also analyzed global gene expression in Mycobacterium avium-infected and uninfected peripheral blood monocytes from 17 MACDZ and 17 healthy controls. We were unable to detect increased T-cell responses against MAC-specific reagents in MACDZ compared to controls, while the responses to non-mycobacteria derived antigens were preserved. MACDZ individuals had a lower frequency of Th1 and Th1* T-cell populations. In addition, MACDZ subjects had lower transcriptional responses in PBMCs stimulated with a mycobacterial peptide pool (MTB300). By contrast, global gene expression analysis demonstrated upregulation of proinflammatory pathways in uninfected and M. avium-infected monocytes, i.e. a hyperinflammatory in vitro response, derived from MACDZ subjects compared to controls. Together, these data suggest a novel immunologic defect which underlies MAC pathogenesis and includes concurrent innate and adaptive dysregulation which persists years after completion of treatment.
Asunto(s)
Enfermedades Pulmonares , Infección por Mycobacterium avium-intracellulare , Humanos , Complejo Mycobacterium avium , Monocitos , Enfermedades Pulmonares/microbiología , Linfocitos T , CitocinasRESUMEN
BACKGROUND: Black and Hispanic children living in urban environments in the USA have an excess burden of morbidity and mortality from asthma. Therapies directed at the eosinophilic phenotype reduce asthma exacerbations in adults, but few data are available in children and diverse populations. Furthermore, the molecular mechanisms that underlie exacerbations either being prevented by, or persisting despite, immune-based therapies are not well understood. We aimed to determine whether mepolizumab, added to guidelines-based care, reduced the number of asthma exacerbations during a 52-week period compared with guidelines-based care alone. METHODS: This is a randomised, double-blind, placebo-controlled, parallel-group trial done at nine urban medical centres in the USA. Children and adolescents aged 6-17 years, who lived in socioeconomically disadvantaged neighbourhoods and had exacerbation-prone asthma (defined as ≥two exacerbations in the previous year) and blood eosinophils of at least 150 cells per µL were randomly assigned 1:1 to mepolizumab (6-11 years: 40 mg; 12-17 years: 100 mg) or placebo injections once every 4 weeks, plus guideline-based care, for 52 weeks. Randomisation was done using a validated automated system. Participants, investigators, and the research staff who collected outcome measures remained masked to group assignments. The primary outcome was the number of asthma exacerbations that were treated with systemic corticosteroids during 52 weeks in the intention-to-treat population. The mechanisms of treatment response were assessed by study investigators using nasal transcriptomic modular analysis. Safety was assessed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT03292588. FINDINGS: Between Nov 1, 2017, and Mar 12, 2020, we recruited 585 children and adolescents. We screened 390 individuals, of whom 335 met the inclusion criteria and were enrolled. 290 met the randomisation criteria, were randomly assigned to mepolizumab (n=146) or placebo (n=144), and were included in the intention-to-treat analysis. 248 completed the study. The mean number of asthma exacerbations within the 52-week study period was 0·96 (95% CI 0·78-1·17) with mepolizumab and 1·30 (1·08-1·57) with placebo (rate ratio 0·73; 0·56-0·96; p=0·027). Treatment-emergent adverse events occurred in 42 (29%) of 146 participants in the mepolizumab group versus 16 (11%) of 144 participants in the placebo group. No deaths were attributed to mepolizumab. INTERPRETATION: Phenotype-directed therapy with mepolizumab in urban children with exacerbation-prone eosinophilic asthma reduced the number of exacerbations. FUNDING: US National Institute of Allergy and Infectious Diseases and GlaxoSmithKline.
Asunto(s)
Asma , Eosinofilia Pulmonar , Anticuerpos Monoclonales Humanizados , Asma/tratamiento farmacológico , Humanos , Estados Unidos , Población UrbanaRESUMEN
Heavy exposure to Mycobacterium tuberculosis, the etiologic agent of tuberculosis (TB) and among the top infectious killers worldwide, results in infection that is cleared, contained, or progresses to disease. Some heavily exposed tuberculosis contacts show no evidence of infection using the tuberculin skin test (TST) and interferon gamma release assay (IGRA); yet the mechanisms underlying this "resister" (RSTR) phenotype are unclear. To identify transcriptional responses that distinguish RSTR monocytes, we performed transcriptome sequencing (RNA-seq) on monocytes isolated from heavily exposed household contacts in Uganda and gold miners in South Africa after ex vivo M. tuberculosis infection. Gene set enrichment analysis (GSEA) revealed several gene pathways that were consistently enriched in response to M. tuberculosis among RSTR subjects compared to controls with positive TST/IGRA testing (latent TB infection [LTBI]) across Uganda and South Africa. The most significantly enriched gene set in which expression was increased in RSTR relative to LTBI M. tuberculosis-infected monocytes was the tumor necrosis factor alpha (TNF-α) signaling pathway whose core enrichment (leading edge) substantially overlapped across RSTR populations. These leading-edge genes included candidate resistance genes (ABCA1 and DUSP2) with significantly increased expression among Uganda RSTRs (false-discovery rate [FDR], <0.1). The distinct monocyte transcriptional response to M. tuberculosis among RSTR subjects, including increased expression of the TNF signaling pathway, highlights genes and inflammatory pathways that may mediate resistance to TST/IGRA conversion and provides therapeutic targets to enhance host restriction of M. tuberculosis intracellular infection. IMPORTANCE After heavy M. tuberculosis exposure, the events that determine why some individuals resist TST/IGRA conversion are poorly defined. Enrichment of the TNF signaling gene set among RSTR monocytes from multiple distinct cohorts suggests an important role for the monocyte TNF response in determining this alternative immune outcome. These TNF responses to M. tuberculosis among RSTRs may contribute to antimicrobial programs that result in early clearance or the priming of alternative (gamma interferon-independent) cellular responses.
Asunto(s)
Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis , Humanos , Ensayos de Liberación de Interferón gamma/métodos , Tuberculosis Latente/diagnóstico , Monocitos , Prueba de Tuberculina/métodos , Tuberculosis/diagnósticoRESUMEN
BACKGROUND: Virus-induced IFN-α secretion by plasmacytoid dendritic cells (pDCs) is negatively impacted by IgE and has been linked to asthma exacerbations. Eosinophils, another contributor to type 2 inflammation, are also associated with asthma severity. OBJECTIVE: We sought to investigate the impact of eosinophils on pDC antiviral interferon responses and determine whether anti-IL-5/5Rα therapy enhances pDC antiviral function. METHODS: Blood pDCs purified from anonymous donors were stimulated in vitro with rhinovirus (RV)-16 in the presence or absence of eosinophils/eosinophil supernatants. IFN-α was measured in supernatants and RNA collected for bulk RNA-sequencing. Next, purified pDCs from 8 individuals with moderate to severe asthma, treated or not treated with anti-IL-5/5Rα therapy, were cultured ex vivo with or without RV; IFN-α secretion and differential gene expression analysis were compared between groups. RESULTS: Exposure to either eosinophils or eosinophil supernatants inhibited RV-induced pDC IFN-α secretion in a dose-dependent manner and did not impact pDC viability. Eosinophil-derived neurotoxin and TGF-ß partially recapitulated pDC IFN-α inhibition. Transcriptome analysis revealed global repression of pDC interferon response patterns by eosinophils, most notably in basal expression of interferon-stimulated genes. Increased RV-induced IFN-α secretion and transcription as well as increased basal interferon-stimulated gene expression was detected in pDCs from participants treated with anti-IL-5/5Rα therapy. CONCLUSIONS: Our findings highlight a novel mechanism through which type 2 inflammation regulates pDC IFN-α responses relevant to RV respiratory infections in the context of eosinophilic airway disease, suggesting a potential mechanism through which eosinophil-depleting therapies may reduce severity of RV illnesses.
Asunto(s)
Asma , Eosinófilos , Antivirales/metabolismo , Asma/tratamiento farmacológico , Asma/metabolismo , Células Dendríticas/metabolismo , Eosinófilos/metabolismo , Humanos , Inflamación/metabolismo , Interferón-alfa/metabolismo , Interleucina-5/inmunología , ARN/metabolismo , Rhinovirus/metabolismoRESUMEN
We live in an increasingly data-driven world, where high-throughput sequencing and mass spectrometry platforms are transforming biology into an information science. This has shifted major challenges in biological research from data generation and processing to interpretation and knowledge translation. However, postsecondary training in bioinformatics, or more generally data science for life scientists, lags behind current demand. In particular, development of accessible, undergraduate data science curricula has the potential to improve research and learning outcomes as well as better prepare students in the life sciences to thrive in public and private sector careers. Here, we describe the Experiential Data science for Undergraduate Cross-Disciplinary Education (EDUCE) initiative, which aims to progressively build data science competency across several years of integrated practice. Through EDUCE, students complete data science modules integrated into required and elective courses augmented with coordinated cocurricular activities. The EDUCE initiative draws on a community of practice consisting of teaching assistants (TAs), postdocs, instructors, and research faculty from multiple disciplines to overcome several reported barriers to data science for life scientists, including instructor capacity, student prior knowledge, and relevance to discipline-specific problems. Preliminary survey results indicate that even a single module improves student self-reported interest and/or experience in bioinformatics and computer science. Thus, EDUCE provides a flexible and extensible active learning framework for integration of data science curriculum into undergraduate courses and programs across the life sciences.
Asunto(s)
Ciencia de los Datos/educación , Aprendizaje , Microbiología/educación , Aprendizaje Basado en Problemas , Colombia Británica , Biología Computacional/educación , Curriculum , Docentes , Humanos , Conocimiento , Modelos Educacionales , Estudiantes , UniversidadesRESUMEN
Social relationships shape human health and mortality via behavioral, psychosocial, and physiological mechanisms, including inflammatory and immune responses. Though not tested in human studies, recent primate studies indicate that the gut microbiome may also be a biological mechanism linking relationships to health. Integrating microbiota data into the 60-year-old Wisconsin Longitudinal Study, we found that socialness with family and friends is associated with differences in the human fecal microbiota. Analysis of spouse (N = 94) and sibling pairs (N = 83) further revealed that spouses have more similar microbiota and more bacterial taxa in common than siblings, with no observed differences between sibling and unrelated pairs. These differences held even after accounting for dietary factors. The differences between unrelated individuals and married couples was driven entirely by couples who reported close relationships; there were no differences in similarity between couples reporting somewhat close relationships and unrelated individuals. Moreover, married individuals harbor microbial communities of greater diversity and richness relative to those living alone, with the greatest diversity among couples reporting close relationships, which is notable given decades of research documenting the health benefits of marriage. These results suggest that human interactions, especially sustained, close marital relationships, influence the gut microbiota.
Asunto(s)
Bacterias/clasificación , Bacterias/genética , Heces/microbiología , Microbioma Gastrointestinal/genética , Relaciones Interpersonales , Hermanos , Esposos/estadística & datos numéricos , Anciano , ADN Bacteriano/análisis , ADN Bacteriano/genética , Femenino , Amigos , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , WisconsinRESUMEN
BACKGROUND: Heifers emit more enteric methane (CH4 ) than adult cows and these emissions tend to decrease per unit feed intake as they age. However, common mitigation strategies like expensive high-quality feeds are not economically feasible for these pre-production animals. Given its direct role in CH4 production, altering the rumen microbiota is another potential avenue for reducing CH4 production by ruminants. However, to identify effective microbial targets, a better understanding of the rumen microbiota and its relationship to CH4 production across heifer development is needed. RESULTS: Here, we investigate the relationship between rumen bacterial, archaeal, and fungal communities as well as CH4 emissions and a number of production traits in prepubertal (PP), pubertal (PB), and pregnant heifers (PG). Overall, PG heifers emitted the most CH4 , followed by PB and PP heifers. The bacterial genus Acetobacter and the archaeal genus Methanobrevibacter were positively associated, while Eubacterium and Methanosphaera were negatively associated with raw CH4 production by heifers. When corrected for dietary intake, both Eubacterium and Methanosphaera remained negatively associated with CH4 production. CONCLUSION: We suggest that Eubacterium and Methanosphaera represent likely targets for CH4 mitigation efforts in heifers as they were negatively associated with CH4 production and not significantly associated with production traits. © 2018 Society of Chemical Industry.