Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neural Netw ; 167: 292-308, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37666187

RESUMEN

Legged robots that can instantly change motor patterns at different walking speeds are useful and can accomplish various tasks efficiently. However, state-of-the-art control methods either are difficult to develop or require long training times. In this study, we present a comprehensible neural control framework to integrate probability-based black-box optimization (PIBB) and supervised learning for robot motor pattern generation at various walking speeds. The control framework structure is based on a combination of a central pattern generator (CPG), a radial basis function (RBF) -based premotor network and a hypernetwork, resulting in a so-called neural CPG-RBF-hyper control network. First, the CPG-driven RBF network, acting as a complex motor pattern generator, was trained to learn policies (multiple motor patterns) for different speeds using PIBB. We also introduce an incremental learning strategy to avoid local optima. Second, the hypernetwork, which acts as a task/behavior to control parameter mapping, was trained using supervised learning. It creates a mapping between the internal CPG frequency (reflecting the walking speed) and motor behavior. This map represents the prior knowledge of the robot, which contains the optimal motor joint patterns at various CPG frequencies. Finally, when a user-defined robot walking frequency or speed is provided, the hypernetwork generates the corresponding policy for the CPG-RBF network. The result is a versatile locomotion controller which enables a quadruped robot to perform stable and robust walking at different speeds without sensory feedback. The policy of the controller was trained in the simulation (less than 1 h) and capable of transferring to a real robot. The generalization ability of the controller was demonstrated by testing the CPG frequencies that were not encountered during training.


Asunto(s)
Robótica , Robótica/métodos , Velocidad al Caminar , Redes Neurales de la Computación , Caminata , Locomoción
2.
IEEE Trans Biomed Eng ; 69(6): 2105-2118, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34932469

RESUMEN

OBJECTIVE: Advances in the motor imagery (MI)-based brain-computer interfaces (BCIs) allow control of several applications by decoding neurophysiological phenomena, which are usually recorded by electroencephalography (EEG) using a non-invasive technique. Despite significant advances in MI-based BCI, EEG rhythms are specific to a subject and various changes over time. These issues point to significant challenges to enhance the classification performance, especially in a subject-independent manner. METHODS: To overcome these challenges, we propose MIN2Net, a novel end-to-end multi-task learning to tackle this task. We integrate deep metric learning into a multi-task autoencoder to learn a compact and discriminative latent representation from EEG and perform classification simultaneously. RESULTS: This approach reduces the complexity in pre-processing, results in significant performance improvement on EEG classification. Experimental results in a subject-independent manner show that MIN2Net outperforms the state-of-the-art techniques, achieving an F1-score improvement of 6.72% and 2.23% on the SMR-BCI and OpenBMI datasets, respectively. CONCLUSION: We demonstrate that MIN2Net improves discriminative information in the latent representation. SIGNIFICANCE: This study indicates the possibility and practicality of using this model to develop MI-based BCI applications for new users without calibration.


Asunto(s)
Interfaces Cerebro-Computador , Imaginación , Algoritmos , Electroencefalografía/métodos , Imaginación/fisiología , Aprendizaje
3.
IEEE J Biomed Health Inform ; 25(6): 1949-1963, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33180737

RESUMEN

Identifying bio-signals based-sleep stages requires time-consuming and tedious labor of skilled clinicians. Deep learning approaches have been introduced in order to challenge the automatic sleep stage classification conundrum. However, the difficulties can be posed in replacing the clinicians with the automatic system due to the differences in many aspects found in individual bio-signals, causing the inconsistency in the performance of the model on every incoming individual. Thus, we aim to explore the feasibility of using a novel approach, capable of assisting the clinicians and lessening the workload. We propose the transfer learning framework, entitled MetaSleepLearner, based on Model Agnostic Meta-Learning (MAML), in order to transfer the acquired sleep staging knowledge from a large dataset to new individual subjects (source code is available at https://github.com/IoBT-VISTEC/MetaSleepLearner). The framework was demonstrated to require the labelling of only a few sleep epochs by the clinicians and allow the remainder to be handled by the system. Layer-wise Relevance Propagation (LRP) was also applied to understand the learning course of our approach. In all acquired datasets, in comparison to the conventional approach, MetaSleepLearner achieved a range of 5.4% to 17.7% improvement with statistical difference in the mean of both approaches. The illustration of the model interpretation after the adaptation to each subject also confirmed that the performance was directed towards reasonable learning. MetaSleepLearner outperformed the conventional approaches as a result from the fine-tuning using the recordings of both healthy subjects and patients. This is the first work that investigated a non-conventional pre-training method, MAML, resulting in a possibility for human-machine collaboration in sleep stage classification and easing the burden of the clinicians in labelling the sleep stages through only several epochs rather than an entire recording.


Asunto(s)
Electroencefalografía , Fases del Sueño , Humanos , Proyectos Piloto , Polisomnografía , Sueño
4.
IEEE Trans Neural Netw Learn Syst ; 30(11): 3409-3418, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30714933

RESUMEN

One of the main concerns of deep reinforcement learning (DRL) is the data inefficiency problem, which stems both from an inability to fully utilize data acquired and from naive exploration strategies. In order to alleviate these problems, we propose a DRL algorithm that aims to improve data efficiency via both the utilization of unrewarded experiences and the exploration strategy by combining ideas from unsupervised auxiliary tasks, intrinsic motivation, and hierarchical reinforcement learning (HRL). Our method is based on a simple HRL architecture with a metacontroller and a subcontroller. The subcontroller is intrinsically motivated by the metacontroller to learn to control aspects of the environment, with the intention of giving the agent: 1) a neural representation that is generically useful for tasks that involve manipulation of the environment and 2) the ability to explore the environment in a temporally extended manner through the control of the metacontroller. In this way, we reinterpret the notion of pixel- and feature-control auxiliary tasks as reusable skills that can be learned via an intrinsic reward. We evaluate our method on a number of Atari 2600 games. We found that it outperforms the baseline in several environments and significantly improves performance in one of the hardest games-Montezuma's revenge-for which the ability to utilize sparse data is key. We found that the inclusion of intrinsic reward is crucial for the improvement in the performance and that most of the benefit seems to be derived from the representations learned during training.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...