Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Purinergic Signal ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879664

RESUMEN

The human equilibrative nucleoside transporter 1 (SLC29A1, hENT1) is a solute carrier that modulates the passive transport of nucleosides and nucleobases, such as adenosine. This nucleoside regulates various physiological processes, such as vasodilation and -constriction, neurotransmission and immune defense. Marketed drugs such as dilazep and dipyridamole have proven useful in cardiovascular afflictions, but the application of hENT1 inhibitors can be beneficial in a number of other diseases. In this study, 39 derivatives of dilazep's close analogue ST7092 were designed, synthesized and subsequently assessed using [3H]NBTI displacement assays and molecular docking. Different substitution patterns of the trimethoxy benzoates of ST7092 reduced interactions within the binding pocket, resulting in diminished hENT1 affinity. Conversely, [3H]NBTI displacement by potentially covalent compounds 14b, 14c, and 14d resulted in high affinities (Ki values between 1.1 and 17.5 nM) for the transporter, primarily by the ability of accommodating the inhibitors in various ways in the binding pocket. However, any indication of covalent binding with amino acid residue C439 remained absent, conceivably as a result of decreased nucleophilic residue reactivity. In conclusion, this research introduces novel dilazep derivatives that are active as hENT1 inhibitors, along with the first high affinity dilazep derivatives equipped with an electrophilic warhead. These findings will aid the rational and structure-based development of novel hENT1 inhibitors and pharmacological tools to study hENT1's function, binding mechanisms, and its relevance in (patho)physiological conditions.

2.
ACS Chem Neurosci ; 15(7): 1424-1431, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38478848

RESUMEN

Excitatory amino acid transporters (EAATs) are important regulators of amino acid transport and in particular glutamate. Recently, more interest has arisen in these transporters in the context of neurodegenerative diseases. This calls for ways to modulate these targets to drive glutamate transport, EAAT2 and EAAT3 in particular. Several inhibitors (competitive and noncompetitive) exist to block glutamate transport; however, activators remain scarce. Recently, GT949 was proposed as a selective activator of EAAT2, as tested in a radioligand uptake assay. In the presented research, we aimed to validate the use of GT949 to activate EAAT2-driven glutamate transport by applying an innovative, impedance-based, whole-cell assay (xCELLigence). A broad range of GT949 concentrations in a variety of cellular environments were tested in this assay. As expected, no activation of EAAT3 could be detected. Yet, surprisingly, no biological activation of GT949 on EAAT2 could be observed in this assay either. To validate whether the impedance-based assay was not suited to pick up increased glutamate uptake or if the compound might not induce activation in this setup, we performed radioligand uptake assays. Two setups were utilized; a novel method compared to previously published research, and in a reproducible fashion copying the methods used in the existing literature. Nonetheless, activation of neither EAAT2 nor EAAT3 could be observed in these assays. Furthermore, no evidence of GT949 binding or stabilization of purified EAAT2 could be observed in a thermal shift assay. To conclude, based on experimental evidence in the present study GT949 requires specific assay conditions, which are difficult to reproduce, and the compound cannot simply be classified as an activator of EAAT2 based on the presented evidence. Hence, further research is required to develop the tools needed to identify new EAAT modulators and use their potential as a therapeutic target.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores , Ácido Glutámico , Transportador 2 de Aminoácidos Excitadores/metabolismo , Impedancia Eléctrica , Ácido Glutámico/metabolismo , Transporte Biológico , Transportador 3 de Aminoácidos Excitadores/metabolismo
3.
Biochem Pharmacol ; 180: 114144, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32653590

RESUMEN

Partial agonists for G protein-coupled receptors (GPCRs) provide opportunities for novel pharmacotherapies with enhanced on-target safety compared to full agonists. For the human adenosine A1 receptor (hA1AR) this has led to the discovery of capadenoson, which has been in phase IIa clinical trials for heart failure. Accordingly, the design and profiling of novel hA1AR partial agonists has become an important research focus. In this study, we report on LUF7746, a capadenoson derivative bearing an electrophilic fluorosulfonyl moiety, as an irreversibly binding hA1AR modulator. Meanwhile, a nonreactive ligand bearing a methylsulfonyl moiety, LUF7747, was designed as a control probe in our study. In a radioligand binding assay, LUF7746's apparent affinity increased to nanomolar range with longer pre-incubation time, suggesting an increasing level of covalent binding over time. Moreover, compared to the reference full agonist CPA, LUF7746 was a partial agonist in a hA1AR-mediated G protein activation assay and resistant to blockade with an antagonist/inverse agonist. An in silico structure-based docking study combined with site-directed mutagenesis of the hA1AR demonstrated that amino acid Y2717.36 was the primary anchor point for the covalent interaction. Additionally, a label-free whole-cell assay was set up to identify LUF7746's irreversible activation of an A1 receptor-mediated cell morphological response. These results led us to conclude that LUF7746 is a novel covalent hA1AR partial agonist and a valuable chemical probe for further mapping the receptor activation process. It may also serve as a prototype for a therapeutic approach in which a covalent partial agonist may cause less on-target side effects, conferring enhanced safety compared to a full agonist.


Asunto(s)
Agonistas del Receptor de Adenosina A1/metabolismo , Agonistas del Receptor de Adenosina A1/farmacología , Diseño de Fármacos , Agonismo Parcial de Drogas , Receptor de Adenosina A1/metabolismo , Agonistas del Receptor de Adenosina A1/química , Animales , Células CHO , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Estructura Secundaria de Proteína , Ensayo de Unión Radioligante/métodos , Receptor de Adenosina A1/química
4.
Eur J Pharmacol ; 880: 173126, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32348778

RESUMEN

In cancer, G protein-coupled receptors (GPCRs) are involved in tumor progression and metastasis. In this study we particularly examined one GPCR, the adenosine A2B receptor. This receptor is activated by high concentrations of its endogenous ligand adenosine, which suppresses the immune response to fight tumor progression. A series of adenosine A2B receptor mutations were retrieved from the Cancer Genome Atlas harboring data from patient samples with different cancer types. The main goal of this work was to investigate the pharmacology of these mutant receptors using a 'single-GPCR-one-G protein' yeast assay technology. Concentration-growth curves were obtained with the full agonist NECA for the wild-type receptor and 15 mutants. Compared to wild-type receptor, the constitutive activity levels in mutant receptors F141L4.61, Y202C5.58 and L310P8.63 were high, while the potency and efficacy of NECA and BAY 60-6583 on Y202C5.58 was lower. A 33- and 26-fold higher constitutive activity on F141L4.61 and L310P8.63 was reduced to wild-type levels in response to the inverse agonist ZM241385. These constitutively active mutants may thus be tumor promoting. Mutant receptors F259S6.60 and Y113F34.53 showed a more than one log-unit decrease in potency. A complete loss of activation was observed in mutant receptors C29R1.54, W130C4.50 and P249L6.50. All mutations were characterized at the structural level, generating hypotheses of their roles on modulating the receptor conformational equilibrium. Taken together, this study is the first to investigate the nature of adenosine A2B receptor cancer mutations and may thus provide insights in mutant receptor function in cancer.


Asunto(s)
Neoplasias/genética , Receptor de Adenosina A2B/genética , Agonistas del Receptor de Adenosina A2/farmacología , Adenosina-5'-(N-etilcarboxamida)/farmacología , Aminopiridinas/farmacología , Biología Computacional , Humanos , Modelos Moleculares , Mutación , Receptor de Adenosina A2B/metabolismo , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA