Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (181)2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35389978

RESUMEN

Primary cilia (PC) are non-motile dynamic microtubule-based organelles that protrude from the surface of most mammalian cells. They emerge from the older centriole during the G1/G0 phase of the cell cycle, while they disassemble as the cells re-enter the cell cycle at the G2/M phase boundary. They function as signal hubs, by detecting and transducing extracellular signals crucial for many cell processes. Similar to most cell types, all neocortical neural stem and progenitor cells (NSPCs) have been shown harboring a PC allowing them to sense and transduce specific signals required for the normal cerebral cortical development. Here, we provide detailed protocols to generate and characterize two-dimensional (2D) and three-dimensional (3D) cell-based models from human induced pluripotent stem cells (hIPSCs) to further dissect the involvement of PC during neocortical development. In particular, we present protocols to study the PC biogenesis and function in 2D neural rosette-derived NSPCs including the transduction of the Sonic Hedgehog (SHH) pathway. To take advantage of the three-dimensional (3D) organization of cerebral organoids, we describe a simple method for 3D imaging of in toto immunostained cerebral organoids. After optical clearing, rapid acquisition of entire organoids allows detection of both centrosomes and PC on neocortical progenitors and neurons of the whole organoid. Finally, we detail the procedure for immunostaining and clearing of thick free-floating organoid sections preserving a significant degree of 3D spatial information and allowing for the high-resolution acquisition required for the detailed qualitative and quantitative analysis of PC biogenesis and function.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neocórtex , Animales , Diferenciación Celular/fisiología , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Mamíferos/metabolismo , Organoides/metabolismo
3.
Bone ; 153: 116152, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34400385

RESUMEN

Acrofrontofacionasal dysostosis type 1 (AFFND1) is an extremely rare disorder characterized by several dysmorphic features, skeletal abnormalities and intellectual disability, and described only in seven patients in the literature. A biallelic variant in the Neuroblastoma Amplified Sequence (NBAS) gene was recently identified in two Indian patients with AFFND1. Here we report genetic investigation of AFFND1 in the originally described Brazilian families and the identification of an extremely rare, recessively-inherited, intronic variant in the Phosphatidylinositol Glycan class B (PIGB) gene NC_000015.10 (NM_004855.4): c.795-19T > G) in the affected individuals. The PIGB gene encodes an enzyme involved in the biosynthesis of the glycosylphosphatidylinositol (GPI) anchor, which is required for the post-translational modification of a large variety of proteins, enabling their correct cellular localization and function. Recessive variants in PIGB have previously been reported in individuals with a neurodevelopmental syndrome having partial overlap with AFFND1. In vitro assays demonstrated that the intronic variant leads to exon skipping, suggesting the Brazilian AFFND1 patients may be null for PIGB, in agreement with their severe clinical phenotype. These data increase the number of pathogenic variants in the PIGB gene, place AFFND1 among GPI deficiencies and extend the spectrum of phenotypes associated with GPI biosynthesis defects.


Asunto(s)
Glicosilfosfatidilinositoles , Disostosis Mandibulofacial , Humanos , Manosiltransferasas/genética , Mutación/genética , Fenotipo , Convulsiones
4.
Genet Med ; 23(12): 2415-2425, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34400813

RESUMEN

PURPOSE: Biallelic hypomorphic variants in PPA2, encoding the mitochondrial inorganic pyrophosphatase 2 protein, have been recently identified in individuals presenting with sudden cardiac death, occasionally triggered by alcohol intake or a viral infection. Here we report 20 new families harboring PPA2 variants. METHODS: Synthesis of clinical and molecular data concerning 34 individuals harboring five previously reported PPA2 variants and 12 novel variants, 11 of which were functionally characterized. RESULTS: Among the 34 individuals, only 6 remain alive. Twenty-three died before the age of 2 years while five died between 14 and 16 years. Within these 28 cases, 15 died of sudden cardiac arrest and 13 of acute heart failure. One case was diagnosed prenatally with cardiomyopathy. Four teenagers drank alcohol before sudden cardiac arrest. Progressive neurological signs were observed in 2/6 surviving individuals. For 11 variants, recombinant PPA2 enzyme activities were significantly decreased and sensitive to temperature, compared to wild-type PPA2 enzyme activity. CONCLUSION: We expand the clinical and mutational spectrum associated with PPA2 dysfunction. Heart failure and sudden cardiac arrest occur at various ages with inter- and intrafamilial phenotypic variability, and presentation can include progressive neurological disease. Alcohol intake can trigger cardiac arrest and should be strictly avoided.


Asunto(s)
Cardiomiopatías , Muerte Súbita Cardíaca , Adolescente , Alelos , Cardiomiopatías/genética , Preescolar , Muerte Súbita Cardíaca/etiología , Humanos , Pirofosfatasa Inorgánica/genética , Pirofosfatasa Inorgánica/metabolismo , Proteínas Mitocondriales/genética , Mutación
5.
Hum Mol Genet ; 29(22): 3662-3678, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33276377

RESUMEN

The genetic causes of multiple congenital anomalies are incompletely understood. Here, we report novel heterozygous predicted loss-of-function (LoF) and predicted damaging missense variants in the WW domain binding protein 11 (WBP11) gene in seven unrelated families with a variety of overlapping congenital malformations, including cardiac, vertebral, tracheo-esophageal, renal and limb defects. WBP11 encodes a component of the spliceosome with the ability to activate pre-messenger RNA splicing. We generated a Wbp11 null allele in mouse using CRISPR-Cas9 targeting. Wbp11 homozygous null embryos die prior to E8.5, indicating that Wbp11 is essential for development. Fewer Wbp11 heterozygous null mice are found than expected due to embryonic and postnatal death. Importantly, Wbp11 heterozygous null mice are small and exhibit defects in axial skeleton, kidneys and esophagus, similar to the affected individuals, supporting the role of WBP11 haploinsufficiency in the development of congenital malformations in humans. LoF WBP11 variants should be considered as a possible cause of VACTERL association as well as isolated Klippel-Feil syndrome, renal agenesis or esophageal atresia.


Asunto(s)
Anomalías Múltiples/genética , Proteínas de Unión al ADN/genética , Haploinsuficiencia/genética , Riñón/metabolismo , Factores de Empalme de ARN/genética , Anomalías Múltiples/patología , Canal Anal/anomalías , Canal Anal/patología , Animales , Esófago/anomalías , Esófago/metabolismo , Esófago/patología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Heterocigoto , Humanos , Riñón/anomalías , Riñón/patología , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/patología , Mutación con Pérdida de Función/genética , Ratones , Empalme del ARN/genética , Columna Vertebral/anomalías , Columna Vertebral/patología , Tráquea/anomalías , Tráquea/patología
6.
Genet Med ; 22(7): 1215-1226, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32376980

RESUMEN

PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies.


Asunto(s)
Discapacidad Intelectual , Transcriptoma , Exoma , Células Germinativas , Humanos , Discapacidad Intelectual/genética , Mutación Missense , Fenotipo , Transcriptoma/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral
7.
Brain ; 143(1): 55-68, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31834374

RESUMEN

MN1 encodes a transcriptional co-regulator without homology to other proteins, previously implicated in acute myeloid leukaemia and development of the palate. Large deletions encompassing MN1 have been reported in individuals with variable neurodevelopmental anomalies and non-specific facial features. We identified a cluster of de novo truncating mutations in MN1 in a cohort of 23 individuals with strikingly similar dysmorphic facial features, especially midface hypoplasia, and intellectual disability with severe expressive language delay. Imaging revealed an atypical form of rhombencephalosynapsis, a distinctive brain malformation characterized by partial or complete loss of the cerebellar vermis with fusion of the cerebellar hemispheres, in 8/10 individuals. Rhombencephalosynapsis has no previously known definitive genetic or environmental causes. Other frequent features included perisylvian polymicrogyria, abnormal posterior clinoid processes and persistent trigeminal artery. MN1 is encoded by only two exons. All mutations, including the recurrent variant p.Arg1295* observed in 8/21 probands, fall in the terminal exon or the extreme 3' region of exon 1, and are therefore predicted to result in escape from nonsense-mediated mRNA decay. This was confirmed in fibroblasts from three individuals. We propose that the condition described here, MN1 C-terminal truncation (MCTT) syndrome, is not due to MN1 haploinsufficiency but rather is the result of dominantly acting C-terminally truncated MN1 protein. Our data show that MN1 plays a critical role in human craniofacial and brain development, and opens the door to understanding the biological mechanisms underlying rhombencephalosynapsis.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Craneofaciales/genética , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Malformaciones del Sistema Nervioso/genética , Transactivadores/genética , Proteínas Supresoras de Tumor/genética , Anomalías Múltiples/diagnóstico por imagen , Adolescente , Arteria Basilar/anomalías , Arteria Basilar/diagnóstico por imagen , Arterias Carótidas/anomalías , Arterias Carótidas/diagnóstico por imagen , Vermis Cerebeloso/anomalías , Vermis Cerebeloso/diagnóstico por imagen , Cerebelo/anomalías , Cerebelo/diagnóstico por imagen , Niño , Preescolar , Estudios de Cohortes , Hibridación Genómica Comparativa , Anomalías Craneofaciales/diagnóstico por imagen , Femenino , Fibroblastos/metabolismo , Humanos , Imagenología Tridimensional , Lactante , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Degradación de ARNm Mediada por Codón sin Sentido , Polimicrogiria/diagnóstico por imagen , Polimicrogiria/genética , RNA-Seq , Reacción en Cadena en Tiempo Real de la Polimerasa , Síndrome , Tomografía Computarizada por Rayos X , Secuenciación del Exoma , Secuenciación Completa del Genoma
9.
Am J Hum Genet ; 104(2): 319-330, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639322

RESUMEN

ZMIZ1 is a coactivator of several transcription factors, including p53, the androgen receptor, and NOTCH1. Here, we report 19 subjects with intellectual disability and developmental delay carrying variants in ZMIZ1. The associated features include growth failure, feeding difficulties, microcephaly, facial dysmorphism, and various other congenital malformations. Of these 19, 14 unrelated subjects carried de novo heterozygous single-nucleotide variants (SNVs) or single-base insertions/deletions, 3 siblings harbored a heterozygous single-base insertion, and 2 subjects had a balanced translocation disrupting ZMIZ1 or involving a regulatory region of ZMIZ1. In total, we identified 13 point mutations that affect key protein regions, including a SUMO acceptor site, a central disordered alanine-rich motif, a proline-rich domain, and a transactivation domain. All identified variants were absent from all available exome and genome databases. In vitro, ZMIZ1 showed impaired coactivation of the androgen receptor. In vivo, overexpression of ZMIZ1 mutant alleles in developing mouse brains using in utero electroporation resulted in abnormal pyramidal neuron morphology, polarization, and positioning, underscoring the importance of ZMIZ1 in neural development and supporting mutations in ZMIZ1 as the cause of a rare neurodevelopmental syndrome.


Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Mutación Puntual , Factores de Transcripción/genética , Alelos , Animales , Niño , Preescolar , Discapacidades del Desarrollo/patología , Femenino , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Ratones , Síndrome , Factores de Transcripción/química , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...