Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39257024

RESUMEN

Calcium (Ca2+) is an essential divalent cation involved in many bodily functions including bone composition, cell growth and division, blood clotting, and muscle contraction. The bone, intestine, and kidneys are important to the maintenance of Ca2+ homeostasis. Ninety-nine percent of body Ca2+ is stored in the skeleton as hydroxyapatite. The small, and to a lesser extent the large intestine absorbs Ca2+ from the diet. Once in the circulation, Ca2+ is filtered by the glomerulus and the majority, >95%, is reabsorbed along the nephron. The remainder is excreted in the urine. Two general (re)absorptive pathways contribute to the vectorial transport of Ca2+ across renal and intestinal epithelia: 1) a paracellular pathway, which is reliant on claudins in the tight junction of epithelium and the electrochemical gradient and 2) a transcellular pathway, which requires different influx, intracellular buffering/shuttling and basolateral efflux mechanisms, to actively transport Ca2+ across the epithelial cell. Blood Ca2+ levels are maintained by hormones including parathyroid hormone, 1,25-dihydroxyvitamin D3, fibroblast growth factor 23 and through effects of Ca2+-sensing receptor (CaSR) signaling. Disruption of Ca2+ homeostasis can result in altered blood Ca2+ levels and/or hypercalciuria, the latter is a phenomenon closely linked to the formation of kidney stones. Genetic alterations affecting renal Ca2+ handling can cause hypercalciuria, an area of expanding investigation. This review explores the molecular mechanisms governing Ca2+ homeostasis by the intestine and kidneys and discusses clinical aspects of genetic disorders associated with Ca2+-based kidney stone disease.

2.
Kidney Int ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089578

RESUMEN

The sodium/proton exchanger-3 (NHE3) plays a major role in acid-base and extracellular volume regulation and is also implicated in calcium homeostasis. As calcium and phosphate balances are closely linked, we hypothesized that there was a functional link between kidney NHE3 activity, calcium, and phosphate balance. Therefore, we examined calcium and phosphate homeostasis in kidney tubule-specific NHE3 knockout mice (NHE3loxloxPax8 mice). Compared to controls, these knockout mice were normocalcemic with no significant difference in urinary calcium excretion or parathyroid hormone levels. Thiazide-induced hypocalciuria was less pronounced in the knockout mice, in line with impaired proximal tubule calcium transport. Knockout mice had greater furosemide-induced calciuresis and distal tubule calcium transport pathways were enhanced. Despite lower levels of the sodium/phosphate cotransporters (NaPi)-2a and -2c, knockout mice had normal plasma phosphate, sodium-dependent 32Phosphate uptake in proximal tubule membrane vesicles and urinary phosphate excretion. Intestinal phosphate uptake was unchanged. Low dietary phosphate reduced parathyroid hormone levels and increased NaPi-2a and -2c abundances in both genotypes, but NaPi-2c levels remained lower in the knockout mice. Gene expression profiling suggested proximal tubule remodeling in the knockout mice. Acutely, indirect NHE3 inhibition using the SGLT2 inhibitor empagliflozin did not affect urinary calcium and phosphate excretion. No differences in femoral bone density or architecture were detectable in the knockout mice. Thus, a role for kidney NHE3 in calcium homeostasis can be unraveled by diuretics, but NHE3 deletion in the kidneys has no major effects on overall calcium and phosphate homeostasis due, at least in part, to compensating mechanisms.

3.
Curr Opin Nephrol Hypertens ; 33(4): 433-440, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690798

RESUMEN

PURPOSE OF REVIEW: Activation of the calcium-sensing receptor (CASR) in the parathyroid gland suppresses the release of parathyroid hormone (PTH). Furthermore, activation of the renal CASR directly increases the urinary excretion of calcium, by inhibiting transepithelial calcium transport in the nephron. Gain-of-function mutations in the CASR gene lead to autosomal dominant hypocalcemia 1 (ADH1), with inappropriately low PTH levels and hypocalcemia, indicative of excessive activation of the parathyroid CASR. However, hypercalciuria is not always observed. The reason why the manifestation of hypercalciuria is not uniform among ADH1 patients is not well understood. RECENT FINDINGS: Direct activation of the CASR in the kidney has been cumbersome to study, and an indirect measure to effectively estimate the degree of CASR activation following chronic hypercalcemia or genetic gain-of-function CASR activation has been lacking. Studies have shown that expression of the pore-blocking claudin-14 is strongly stimulated by the CASR in a dose-dependent manner. This stimulatory effect is abolished after renal Casr ablation in hypercalcemic mice, suggesting that claudin-14 abundance may gauge renal CASR activation. Using this marker has led to unexpected discoveries regarding renal CASR activation. SUMMARY: These new studies have informed on renal CASR activation thresholds and the downstream CASR-regulated calcium transport mechanisms.


Asunto(s)
Riñón , Receptores Sensibles al Calcio , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/genética , Humanos , Animales , Riñón/metabolismo , Hipercalciuria/metabolismo , Hipercalciuria/genética , Calcio/metabolismo , Hipercalcemia/metabolismo , Hipercalcemia/genética , Claudinas/metabolismo , Claudinas/genética , Hipocalcemia , Hipoparatiroidismo/congénito
5.
Acta Physiol (Oxf) ; 240(3): e14096, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38258597

RESUMEN

AIM: Magnesium (Mg2+ ) is a vasorelaxant. The underlying physiological mechanisms driving this vasorelaxation remain unclear. Studies were designed to test the hypothesis that multiple signaling pathways including nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) in endothelial cells as well as Ca2+ antagonization and TRPM7 channels in vascular smooth muscle cells mediate Mg2+ -dependent vessel relaxation. METHODS: To uncover these mechanisms, force development was measured ex vivo in aorta rings from mice using isometric wire myography. Concentration responses to Mg2+ were studied in intact and endothelium-denuded aortas. Key findings were confirmed in second-order mesenteric resistance arteries perfused ex vivo using pressure myography. Effects of Mg2+ on NO formation were measured in Chinese Hamster Ovary (CHO) cells, isolated mesenteric vessels, and mouse urine. RESULTS: Mg2+ caused a significant concentration-dependent relaxation of aorta rings. This relaxation was attenuated significantly in endothelium-denuded aortas. The endothelium-dependent portion was inhibited by NO and cGMP blockade but not by cyclooxygenase inhibition. Mg2+ stimulated local NO formation in CHO cells and isolated mesenteric vessels without changing urinary NOx levels. High extracellular Mg2+ augmented acetylcholine-induced relaxation. SKCa and IKCa channel blockers apamin and TRAM34 inhibited Mg2+ -dependent relaxation. The endothelium-independent relaxation in aorta rings was inhibited by high extracellular Ca2+ . Combined blockade of NO, SKCa , and IKCa channels significantly reduced Mg2+ -dependent dilatation in mesenteric resistance vessels. CONCLUSIONS: In mouse conductance and resistance arteries Mg2+ -induced relaxation is contributed by endothelial NO formation, EDHF pathways, antagonism of Ca2+ in smooth muscle cells, and additional unidentified mechanisms.


Asunto(s)
Magnesio , Óxido Nítrico , Ratones , Animales , Cricetinae , Óxido Nítrico/metabolismo , Magnesio/farmacología , Magnesio/metabolismo , Células CHO , Cricetulus , Células Endoteliales/metabolismo , Endotelio Vascular , Factores Biológicos/metabolismo , Factores Biológicos/farmacología , Arterias Mesentéricas , Vasodilatación , Músculo Liso Vascular/metabolismo
6.
J Hepatol ; 80(3): 467-481, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37972658

RESUMEN

BACKGROUND & AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) is linked to insulin resistance and type 2 diabetes and marked by hepatic inflammation, microvascular dysfunction, and fibrosis, impairing liver function and aggravating metabolic derangements. The liver homeostatic interactions disrupted in MASH are still poorly understood. We aimed to elucidate the plasticity and changing interactions of non-parenchymal cells associated with advanced MASH. METHODS: We characterized a diet-induced mouse model of advanced MASH at single-cell resolution and validated findings by assaying chromatin accessibility, bioimaging murine and human livers, and via functional experiments in vivo and in vitro. RESULTS: The fibrogenic activation of hepatic stellate cells (HSCs) led to deterioration of a signaling module consisting of the bile acid receptor NR1H4/FXR and HSC-specific GS-protein-coupled receptors (GSPCRs) capable of preserving stellate cell quiescence. Accompanying HSC activation, we further observed the attenuation of HSC Gdf2 expression, and a MASH-associated expansion of a CD207-positive macrophage population likely derived from both incoming monocytes and Kupffer cells. CONCLUSION: We conclude that HSC-expressed NR1H4 and GSPCRs of the healthy liver integrate postprandial cues, which sustain HSC quiescence and, through paracrine signals, overall sinusoidal health. Hence HSC activation in MASH not only drives fibrogenesis but may desensitize the hepatic sinusoid to liver homeostatic signals. IMPACT AND IMPLICATIONS: Homeostatic interactions between hepatic cell types and their deterioration in metabolic dysfunction-associated steatohepatitis are poorly characterized. In our current single cell-resolved study of advanced murine metabolic dysfunction-associated steatohepatitis, we identified a quiescence-associated hepatic stellate cell-signaling module with potential to preserve normal sinusoid function. As expression levels of its constituents are conserved in the human liver, stimulation of the identified signaling module is a promising therapeutic strategy to restore sinusoid function in chronic liver disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hígado Graso , Ratones , Humanos , Animales , Pericitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hígado/patología , Transducción de Señal , Células Estrelladas Hepáticas/metabolismo , Hígado Graso/metabolismo , Cirrosis Hepática/patología , Factor 2 de Diferenciación de Crecimiento/metabolismo
8.
Function (Oxf) ; 4(5): zqad033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575484

RESUMEN

A higher concentration of calcium in breast milk than blood favors paracellular calcium absorption enabling growth during postnatal development. We aimed to determine whether suckling animals have greater intestinal calcium permeability to maximize absorption and to identify the underlying molecular mechanism. We examined intestinal claudin expression at different ages in mice and in human intestinal epithelial (Caco-2) cells in response to hormones or human milk. We also measured intestinal calcium permeability in wildtype, Cldn2 and Cldn12 KO mice and Caco-2 cells in response to hormones or human milk. Bone mineralization in mice was assessed by µCT. Calcium permeability across the jejunum and ileum of mice were 2-fold greater at 2 wk than 2 mo postnatal age. At 2 wk, Cldn2 and Cldn12 expression were greater, but only Cldn2 KO mice had decreased calcium permeability compared to wildtype. This translated to decreased bone volume, cross-sectional thickness, and tissue mineral density of femurs. Weaning from breast milk led to a 50% decrease in Cldn2 expression in the jejunum and ileum. Epidermal growth factor (EGF) in breast milk specifically increased only CLDN2 expression and calcium permeability in Caco-2 cells. These data support intestinal permeability to calcium, conferred by claudin-2, being greater in suckling mice and being driven by EGF in breast milk. Loss of the CLDN2 pathway leads to suboptimal bone mineralization at 2 wk of life. Overall, EGF-mediated control of intestinal claudin-2 expression contributes to maximal intestinal calcium absorption in suckling animals.


Asunto(s)
Claudina-2 , Factor de Crecimiento Epidérmico , Humanos , Femenino , Animales , Ratones , Claudina-2/metabolismo , Células CACO-2 , Estudios Transversales , Calcio de la Dieta/metabolismo , Permeabilidad
9.
Acta Physiol (Oxf) ; 239(2): e14029, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37563989

RESUMEN

AIM: Phosphorus is a critical constituent of bone as a component of hydroxyapatite. Bone mineral content accrues rapidly early in life necessitating a positive phosphorus balance, which could be established by a combination of increased renal reabsorption and intestinal absorption. Intestinal absorption can occur via a transcellular pathway mediated by the apical sodium-phosphate cotransporter, Slc34a2/NaPiIIb or via the paracellular pathway. We sought to determine how young mammals increase dietary phosphorus absorption from the small intestine to establish a positive phosphorus balance, a prerequisite for rapid bone growth. METHODS: The developmental expression profile of genes mediating phosphate absorption from the small intestine was determined in mice by qPCR and immunohistochemistry. Additionally, Ussing chamber studies were performed on small bowel of young (p7-p14) and older (8- to 17-week-old) mice to examine developmental changes in paracellular Pi permeability and transcellular Pi transport. RESULTS: Blood and urinary Pi levels were higher in young mice. Intestinal paracellular phosphate permeability of young mice was significantly increased relative to older mice across all intestinal segments. NaPiIIb expression was markedly increased in juvenile mice, in comparison to adult animals. Consistent with this, young mice had increased transcellular phosphate flux across the jejunum and ileum relative to older animals. Moreover, transcellular phosphate transport was attenuated by the NaPiIIb inhibitor NTX1942 in the jejunum and ileum of young mice. CONCLUSION: Our results are consistent with young mice increasing phosphate absorption via increasing paracellular permeability and the NaPiIIb-mediated transcellular pathway.

10.
Ann N Y Acad Sci ; 1526(1): 126-137, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37344378

RESUMEN

The kidney is critical for mineral homeostasis. Calcium and magnesium reabsorption in the renal thick ascending limb (TAL) involves claudin-16 (CLDN16) and claudin-19 (CLDN19) and pathogenic variants in either gene lead to familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) with severe calcium and magnesium wasting. While both CLDN16 and CLDN19 localize to the TAL, varying expression patterns in the renal tubule have been reported using different antibodies. We, therefore, studied the localization of CLDN19 in the kidneys of wild-type and Cldn19-deleted mice using three anti-CLDN19 antibodies and examined the role of Cldn19 deletion on CLDN16 and CLDN10 localization. We find that CLDN19 localizes to basolateral membrane domains of the medullary and cortical TAL but only to the tight junction of TALs in the outer stripe of outer medulla and cortex, where it colocalizes with CLDN16. Furthermore, in TALs from Cldn19-deleted mice, CLDN16 is expressed in basolateral membrane domains but not at the tight junction. In contrast, Cldn19 ablation does not change CLDN10 localization. These findings directly implicate CLDN19 in regulating permeability in the TAL by allowing junctional insertion of CLDN16 and may explain the shared renal phenotypic characteristics in FHHNC patients.


Asunto(s)
Magnesio , Nefrocalcinosis , Animales , Ratones , Calcio/metabolismo , Claudinas/genética , Magnesio/metabolismo , Nefrocalcinosis/genética
12.
Acta Physiol (Oxf) ; 238(1): e13959, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36894509

RESUMEN

Central to the maintenance of calcium homeostasis is the regulated reabsorption of calcium along the nephron. To this end, parathyroid hormone (PTH) is released from the parathyroid gland in response to lowered plasma calcium levels. This hormone acts through the PTH 1 receptor along the nephron to increase urinary phosphate excretion and decrease urinary calcium excretion. In the proximal tubule, PTH inhibits phosphate reabsorption by reducing the abundance of sodium phosphate cotransporters in the apical membrane. PTH likely decreases calcium reabsorption from the proximal tubule, by reducing the reabsorption of sodium, an event necessary for the paracellular movement of calcium across this segment. In the thick ascending limb (TAL), PTH increases calcium permeability and may increase the electrical driving force thereby increasing calcium reabsorption in the TAL. Finally, in the distal convolution, PTH acts to increase transcellular calcium reabsorption by increasing the activity and abundance of the apically expressed calcium channel TRPV5.


Asunto(s)
Calcio , Hormona Paratiroidea , Hormona Paratiroidea/farmacología , Fosfatos , Túbulos Renales , Túbulos Renales Proximales
13.
Ann N Y Acad Sci ; 1518(1): 69-83, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36200584

RESUMEN

Calcium and magnesium are the most abundant divalent cations in the body. The plasma level is controlled by coordinated interaction between intestinal absorption, reabsorption in the kidney, and, for calcium at least, bone storage and exchange. The kidney adjusts urinary excretion of these ions in response to alterations in their systemic concentration. Free ionized and anion-complexed calcium and magnesium are filtered at the glomerulus. The majority (i.e., >85%) of filtered divalent cations are reabsorbed via paracellular pathways from the proximal tubule and thick ascending limb (TAL) of the loop of Henle. Interestingly, the largest fraction of filtered calcium is reabsorbed from the proximal tubule (65%), while the largest fraction of filtered magnesium is reclaimed from the TAL (60%). The paracellular pathways mediating these fluxes are composed of tight junctional pores formed by claudins. In the proximal tubule, claudin-2 and claudin-12 confer calcium permeability, while the exact identity of the magnesium pore remains to be determined. Claudin-16 and claudin-19 contribute to the calcium and magnesium permeable pathway in the TAL. In this review, we discuss the data supporting these conclusions and speculate as to why there is greater fractional calcium reabsorption from the proximal tubule and greater fractional magnesium reabsorption from the TAL.


Asunto(s)
Calcio , Magnesio , Humanos , Magnesio/metabolismo , Calcio/metabolismo , Asa de la Nefrona/metabolismo , Cationes Bivalentes/metabolismo , Claudinas/metabolismo , Calcio de la Dieta
14.
Acta Physiol (Oxf) ; 235(2): e13824, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35466572
15.
EBioMedicine ; 78: 103947, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35313217

RESUMEN

BACKGROUND: Parathyroid Ca2+-sensing receptor (CaSR) activation inhibits parathyroid hormone (PTH) release, while activation of renal CaSRs attenuates Ca2+ transport and increases expression of the pore-blocking claudin-14. Patients with autosomal dominant hypocalcemia 1 (ADH1), due to activating CASR mutations, exhibit hypocalcemia but not always hypercalciuria (elevated Ca2+ in urine). The latter promotes nephrocalcinosis and renal insufficiency. Although CaSRs throughout the body including the kidney harbor activating CASR mutations, it is not understood why only some ADH1 patients display hypercalciuria. METHODS: Activation of the CaSR was studied in mouse models and a ADH1 patient. In vitro CaSR activation was studied in HEK293 cells. FINDINGS: Cldn14 showed blood Ca2+ concentration-dependent regulation, which was absent in mice with kidney-specific Casr deletion, indicating Cldn14 is a suitable marker for chronic CaSR activation in the kidney. Mice with a gain-of-function mutation in the Casr (Nuf) were hypocalcemic with low plasma PTH levels. However, renal CaSRs were not activated at baseline but only after normalizing blood Ca2+ levels. Similarly, significant hypercalciuria was not observed in a ADH1 patient until blood Ca2+ was normalized. In vitro experiments indicate that increased CaSR expression in the parathyroid relative to the kidney could contribute to tissue-specific CaSR activation thresholds. INTERPRETATION: Our findings suggest that parathyroid CaSR overactivity can reduce plasma Ca2+ to levels insufficient to activate renal CaSRs, even when an activating mutation is present. These findings identify a conceptually new mechanism of CaSR-dependent Ca2+ balance regulation that aid in explaining the spectrum of hypercalciuria in ADH1 patients. FUNDING: Erasmus+ 2018/E+/4458087, the Canadian Institutes for Health research, the Novo Nordisk Foundation, the Beckett Foundation, the Carlsberg Foundation and Independent Research Fund Denmark.


Asunto(s)
Hipercalciuria , Hipocalcemia , Animales , Calcio/metabolismo , Canadá , Células HEK293 , Humanos , Hipercalciuria/genética , Hipocalcemia/genética , Hipoparatiroidismo/congénito , Riñón/metabolismo , Ratones , Hormona Paratiroidea , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo
16.
J Steroid Biochem Mol Biol ; 220: 106098, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35339651

RESUMEN

Calcium absorption and secretion can occur along the length of the small and large intestine. To date, the focus of research into intestinal calcium absorption has been the small intestine, the site contributing the majority of intestinal calcium absorption. However, evidence that the colon contributes as much as 10% of enteral calcium transport has been available for decades. Transcellular calcium absorption and bidirectional paracellular calcium flux contributing to either net absorption or secretion have been observed in the colon, depending on the physiological state. Moreover, the calcium transport pathways contributing to colonic absorption or secretion are regulated by a variety of hormones, including calcitriol, plasma calcium and dietary factors, including prebiotics. Herein we review historical and recent research highlighting the role of colonic calcium transport in overall maintenance of calcium balance, and suggest these data are consistent with the colon being a site of significant regulated transepithelial calcium transport.


Asunto(s)
Conservadores de la Densidad Ósea , Calcio , Conservadores de la Densidad Ósea/metabolismo , Calcio/metabolismo , Calcio de la Dieta/metabolismo , Colon/metabolismo , Homeostasis , Absorción Intestinal , Mucosa Intestinal/metabolismo
17.
Pediatr Nephrol ; 37(11): 2657-2665, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35211789

RESUMEN

BACKGROUND: Autosomal recessive polycystic kidney disease is a cystic kidney disease with early onset and clinically characterized by enlarged echogenic kidneys, hypertension, varying degrees of kidney dysfunction, and liver fibrosis. It is most frequently caused by sequence variants in the PKHD1 gene, encoding fibrocystin. In more rare cases, sequence variants in DZIP1L are seen, encoding the basal body protein DAZ interacting protein 1-like protein (DZIP1L). So far, only four different DZIP1L variants have been reported. METHODS: Four children from three consanguineous families presenting with polycystic kidney disease were selected for targeted or untargeted exome sequencing. RESULTS: We identified two different, previously not reported homozygous DZIP1L sequence variants: c.193 T > C; p.(Cys65Arg), and c.216C > G; p.(Cys72Trp). Functional analyses of the c.216C > G; p.(Cys72Trp) variant indicated mislocalization of mutant DZIP1L. CONCLUSIONS: In line with published data, our results suggest a critical role of the N-terminal domain for proper protein function. Although patients with PKHD1-associated autosomal recessive polycystic kidney disease often have liver abnormalities, none of the present four patients showed any clinically relevant liver involvement. Our data demonstrate the power and efficiency of next-generation sequencing-based approaches. While DZIP1L-related polycystic kidney disease certainly represents a rare form of the disease, our results emphasize the importance of including DZIP1L in multigene panels and in the data analysis of whole-exome sequencing for cystic kidney diseases. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Riñón Poliquístico Autosómico Recesivo , Proteínas Adaptadoras Transductoras de Señales/análisis , Proteínas Adaptadoras Transductoras de Señales/genética , Niño , Consanguinidad , Pruebas Genéticas/métodos , Humanos , Mutación , Riñón Poliquístico Autosómico Recesivo/diagnóstico , Riñón Poliquístico Autosómico Recesivo/genética , Receptores de Superficie Celular/genética , Secuenciación del Exoma
18.
Sci Rep ; 12(1): 496, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017633

RESUMEN

The in vivo function of cell-derived extracellular vesicles (EVs) is challenging to establish since cell-specific EVs are difficult to isolate and differentiate. We, therefore, created an EV reporter using truncated CD9 to display enhanced green fluorescent protein (EGFP) on the EV surface. CD9truc-EGFP expression in cells did not affect EV size and concentration but enabled co-precipitation of EV markers TSG101 and ALIX from the cell-conditioned medium by anti-GFP immunoprecipitation. We then created a transgenic mouse where CD9truc-EGFP was inserted in the inverse orientation and double-floxed, ensuring irreversible Cre recombinase-dependent EV reporter expression. We crossed the EV reporter mice with mice expressing Cre ubiquitously (CMV-Cre), in cardiomyocytes (αMHC-MerCreMer) and renal tubular epithelial cells (Pax8-Cre), respectively. The CD9truc-EGFP positive mice showed Cre-dependent EGFP expression, and plasma CD9truc-EGFP EVs were immunoprecipitated only from CD9truc-EGFP positive CD9truc-EGFPxCMV-Cre and CD9truc-EGFPxαMHC-Cre mice, but not in CD9truc-EGFPxPax8-Cre and CD9truc-EGFP negative mice. In urine samples, CD9truc-EGFP EVs were detected by immunoprecipitation only in CD9truc-EGFP positive CD9truc-EGFPxCMV-Cre and CD9truc-EGFPxPax8-Cre mice, but not CD9truc-EGFPxαMHC-Cre and CD9truc-EGFP negative mice. In conclusion, our EV reporter mouse model enables Cre-dependent EV labeling, providing a new approach to studying cell-specific EVs in vivo and gaining a unique insight into their physiological and pathophysiological function.


Asunto(s)
Vesículas Extracelulares/metabolismo , Proteínas Fluorescentes Verdes/genética , Ratones Transgénicos/genética , Animales , Células Epiteliales/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/genética , Genes Reporteros , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Túbulos Renales Distales/citología , Túbulos Renales Distales/metabolismo , Ratones , Ratones Transgénicos/metabolismo , Miocitos Cardíacos/metabolismo , Especificidad de Órganos , Transgenes
19.
J Am Soc Nephrol ; 33(3): 547-564, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35022312

RESUMEN

BACKGROUND: Treatment with the aminoglycoside antibiotic gentamicin can be associated with severe adverse effects, including renal Ca2+ wasting. The underlying mechanism is unknown but it has been proposed to involve activation of the Ca2+-sensing receptor (CaSR) in the thick ascending limb, which would increase expression of claudin-14 (CLDN14) and limit Ca2+ reabsorption. However, no direct evidence for this hypothesis has been presented. METHODS: We studied the effect of gentamicin in vivo using mouse models with impaired Ca2+ reabsorption in the proximal tubule and the thick ascending limb. We used a Cldn14 promoter luciferase reporter assay to study CaSR activation and investigated the effect of gentamicin on activity of the distal nephron Ca2+ channel transient receptor potential vanilloid 5 (TRPV5), as determined by patch clamp in HEK293 cells. RESULTS: Gentamicin increased urinary Ca2+ excretion in wild-type mice after acute and chronic administration. This calciuretic effect was unaltered in mice with genetic CaSR overactivation and was present in furosemide-treated animals, whereas the calciuretic effect in Cldn14-/- mice and mice with impaired proximal tubular Ca2+ reabsorption (claudin-2 [CLDN2]-deficient Cldn2-/- mice) was equivalent to that of wild-type mice. In vitro, gentamicin failed to activate the CaSR. In contrast, patch clamp analysis revealed that gentamicin strongly inhibited rabbit and human TRPV5 activity and chronic gentamicin administration downregulated distal nephron Ca2+ transporters. CONCLUSIONS: Gentamicin does not cause hypercalciuria via activation of the CaSR-CLDN14 pathway or by interfering with proximal tubular CLDN2-dependent Ca2+ reabsorption. Instead, gentamicin blocks distal Ca2+ reabsorption by direct inhibition of the Ca2+ channel TRPV5. These findings offer new insights into Ca2+ wasting in patients treated with gentamicin.


Asunto(s)
Gentamicinas , Receptores Sensibles al Calcio , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Proteínas Portadoras , Claudinas , Gentamicinas/farmacología , Células HEK293 , Humanos , Ratones , Conejos , Receptores Sensibles al Calcio/genética , Canales Catiónicos TRPV/genética
20.
Acta Physiol (Oxf) ; 234(2): e13731, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34519423

RESUMEN

AIM: With diabetes comes a significant risk of macrovascular and microvascular complications. Circulating aldosterone levels increase in patients with diabetes. Aldosterone can directly affect vascular function via activation of the mineralocorticoid receptor (MR). We hypothesized that aldosterone via endothelial MR impairs endothelial function in a murine model of experimental diabetes. METHOD: Endothelial cell-specific mineralocorticoid receptor knockout MRflox/flox ; Tie2-Cre mice (ECMR-KO) and wild-type FVB littermates were subjected to an experimental type-1 diabetic model by low dose streptozotocin injections (55mg/kg/day) for five consecutive days. After 10 weeks of diabetes, second-order mesenteric resistance arteries were perfused ex vivo to evaluate vessel contractility and endothelial function. The effect of ex vivo incubation with aldosterone with and without the antagonist, spironolactone was determined. RESULTS: Diabetic ECMR-KO and wild-type mice had similar, elevated, plasma aldosterone concentration while only diabetic wild-type mice displayed elevated urine albumin excretion and cardiac and kidney hypertrophy at 10 weeks. There were no differences in contraction (Emax and EC50 ) to thromboxane receptor agonist (U46619) and elevated K+ between groups. Wild-type diabetic mice showed impaired acetylcholine (ACh)-dependent relaxation, while diabetic ECMR-KO mice had intact ACh-mediated relaxation. Aldosterone incubation ex vivo impaired ACh mediated relaxation and rendered responses similar to diabetic WT arteries. Direct, ex vivo aldosterone effects were absent in ECMR-KO animals. Ex vivo inhibitory effects of aldosterone on endothelial relaxation in arteries from WT were abolished by spironolactone. CONCLUSION: These findings show that endothelial cell mineralocorticoid receptor activation accounts for diabetes-induced systemic endothelial dysfunction in experimental diabetes and may explain the cardiovascular protection by MR antagonists in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Receptores de Mineralocorticoides , Aldosterona/farmacología , Animales , Ratones , Ratones Noqueados , Antagonistas de Receptores de Mineralocorticoides/farmacología , Espironolactona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...