Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612856

RESUMEN

PURPOSE: Resveratrol is a natural polyphenol which has a very low bioavailability but whose antioxidant, anti-inflammatory and anti-apoptotic properties may have therapeutic potential for the treatment of neurodegenerative diseases such as multiple sclerosis (MS). Previously, we reported the oral administration of resveratrol nanoparticles (RNs) elicited a neuroprotective effect in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS, at significantly lower doses than unconjugated resveratrol (RSV) due to enhanced bioavailability. Furthermore, we demonstrated that the intranasal administration of a cell-derived secretome-based therapy at low concentrations leads to the selective neuroprotection of the optic nerve in EAE mice. The current study sought to assess the potential selective efficacy of lower concentrations of intranasal RNs for attenuating optic nerve damage in EAE mice. METHODS: EAE mice received either a daily intranasal vehicle, RNs or unconjugated resveratrol (RSV) for a period of thirty days beginning on the day of EAE induction. Mice were assessed daily for limb paralysis and weekly for visual function using the optokinetic response (OKR) by observers masked to treatment regimes. After sacrifice at day 30, spinal cords and optic nerves were stained to assess inflammation and demyelination, and retinas were immunostained to quantify retinal ganglion cell (RGC) survival. RESULTS: Intranasal RNs significantly increased RGC survival at half the dose previously shown to be required when given orally, reducing the risk of systemic side effects associated with prolonged use. Both intranasal RSV and RN therapies enhanced RGC survival trends, however, only the effects of intranasal RNs were significant. RGC loss was prevented even in the presence of inflammatory and demyelinating changes induced by EAE in optic nerves. CONCLUSIONS: The intranasal administration of RNs is able to reduce RGC loss independent of the inflammatory and demyelinating effects on the optic nerve and the spinal cord. The concentration of RNs needed to achieve neuroprotection is lower than previously demonstrated with oral administration, suggesting intranasal drug delivery combined with nanoparticle conjugation warrants further exploration as a potential neuroprotective strategy for the treatment of optic neuritis, alone as well as in combination with glucocorticoids.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Nanopartículas , Animales , Ratones , Resveratrol/farmacología , Neuroprotección , Administración Intranasal , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico
2.
Invest Ophthalmol Vis Sci ; 65(4): 19, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587440

RESUMEN

Purpose: Retinal ganglion cell (RGC) loss provides the basis for diagnosis and stage determination of many optic neuropathies, and quantification of RGC survival is a critical outcome measure in models of optic neuropathy. This study examines the accuracy of manual RGC counting using two selective markers, Brn3a and RBPMS. Methods: Retinal flat mounts from 1- to 18-month-old C57BL/6 mice, and from mice after microbead (MB)-induced intraocular pressure (IOP) elevation, are immunostained with Brn3a and/or RBPMS antibodies. Four individuals masked to the experimental conditions manually counted labeled RGCs in three copies of five images, and inter- and intra-person reliability was evaluated by the intraclass correlation coefficient (ICC). Results: A larger population (approximately 10% higher) of RGCs are labeled with RBPMS than Brn3a antibody up to 6 months of age, but differences decrease to approximately 1% at older ages. Both RGC-labeled populations significantly decrease with age. MB-induced IOP elevation is associated with a significant decrease of both Brn3a- and RBPMS-positive RGCs. Notably, RGC labeling with Brn3a provides more consistent cell counts than RBPMS in interpersonal (ICC = 0.87 to 0.11, respectively) and intra-personal reliability (ICC = 0.97 to 0.66, respectively). Conclusions: Brn3a and RBPMS markers are independently capable of detecting significant decreases of RGC number with age and in response to IOP elevation despite RPBMS detecting a larger number of RGCs up to 6 months of age. Brn3a labeling is less prone to manual cell counting variability than RBPMS labeling. Overall, either marker can be used as a single marker to detect significant changes in RGC survival, each offering distinct advantages.


Asunto(s)
Enfermedades del Nervio Óptico , Células Ganglionares de la Retina , Animales , Ratones , Envejecimiento , Anticuerpos , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Proteínas de Unión al ARN
3.
Gene Ther ; 31(3-4): 175-186, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38200264

RESUMEN

Recombinant adeno-associated virus (AAV)-2 has significant potential as a delivery vehicle of therapeutic genes to retinal ganglion cells (RGCs), which are key interventional targets in optic neuropathies. Here we show that when injected intravitreally, AAV2 engineered with a reporter gene driven by cytomegalovirus (CMV) enhancer and chicken ß-actin (CBA) promoters, displays ubiquitous and high RGC expression, similar to its synthetic derivative AAV8BP2. A novel AAV2 vector combining the promoter of the human RGC-selective γ-synuclein (hSNCG) gene and woodchuck hepatitis post-transcriptional regulatory element (WPRE) inserted upstream and downstream of a reporter gene, respectively, induces widespread transduction and strong transgene expression in RGCs. High transduction efficiency and selectivity to RGCs is further achieved by incorporating in the vector backbone a leading CMV enhancer and an SV40 intron at the 5' and 3' ends, respectively, of the reporter gene. As a delivery vehicle of hSIRT1, a 2.2-kb therapeutic gene with anti-apoptotic, anti-inflammatory and anti-oxidative stress properties, this recombinant vector displayed improved transduction efficiency, a strong, widespread and selective RGC expression of hSIRT1, and increased RGC survival following optic nerve crush. Thus, AAV2 vector carrying hSNCG promoter with additional regulatory sequences may offer strong potential for enhanced effects of candidate gene therapies targeting RGCs.


Asunto(s)
Infecciones por Citomegalovirus , Parvovirinae , Humanos , Células Ganglionares de la Retina/metabolismo , Terapia Genética , Transgenes , Nervio Óptico , Dependovirus/genética , Parvovirinae/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/metabolismo , Vectores Genéticos/genética
4.
Neurotherapeutics ; 20(4): 1138-1153, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37160530

RESUMEN

Resveratrol is a natural polyphenol which may be useful for treating neurodegenerative diseases such as multiple sclerosis (MS). To date, current immunomodulatory treatments for MS aim to reduce inflammation with limited effects on the neurodegenerative component of this disease. The purpose of the current study is to develop a novel nanoparticle formulation of resveratrol to increase its solubility, and to assess its ability to prevent optic nerve and spinal cord degeneration in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Resveratrol nanoparticles (RNs) were made using a thin rehydration technique. EAE mice received a daily oral administration of vehicle, RNs or unconjugated resveratrol for one month. They were assessed daily for clinical signs of paralysis and weekly for their visual acuity with optokinetic responses (OKR). After one month, their spinal cords and optic nerves were stained for inflammation and demyelination and retinal ganglion cells immunostained for Brn3a. RNs were stable for three months. The administration of RNs did not have any effect on clinical manifestation of EAE and did not preserve OKR scores but reduced the intensity of the disease. It did not reduce inflammation and demyelination in the spinal cord and the optic nerve. However, RNs were able to decrease RGC loss compared to the vehicle. Results demonstrate that resveratrol is neuroprotective by reducing RGC loss. Interestingly, neuroprotective effects and decreased disease severity occurred without reduction of inflammation or demyelination, suggesting this therapy may fill an unmet need to limit the neurodegenerative component of MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Fármacos Neuroprotectores , Neuritis Óptica , Ratones , Animales , Resveratrol , Fármacos Neuroprotectores/uso terapéutico , Solubilidad , Ratones Endogámicos C57BL , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Modelos Animales de Enfermedad
5.
Neurotherapeutics ; 20(3): 896-907, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36941497

RESUMEN

SIRT1 prevents retinal ganglion cell (RGC) loss in several acute and subacute optic neuropathy models following pharmacologic activation or genetic overexpression. We hypothesized that adeno-associated virus (AAV)-mediated overexpression of SIRT1 in RGCs in a chronic ocular hypertension model can reduce RGC loss, thereby preserving visual function by sustained therapeutic effect. A control vector AAV-eGFP and therapeutic vector AAV-SIRT1 were constructed and optimized for transduction efficiency. A magnetic microbead mouse model of ocular hypertension was optimized to induce a time-dependent and chronic loss of visual function and RGC degeneration. Mice received intravitreal injection of control or therapeutic AAV in which a codon-optimized human SIRT1 expression is driven by a RGC selective promoter. Intraocular pressure (IOP) was measured, and visual function was examined by optokinetic response (OKR) weekly for 49 days following microbead injection. Visual function, RGC survival, and axon numbers were compared among control and therapeutic AAV-treated animals. AAV-eGFP and AAV-SIRT1 showed transduction efficiency of ~ 40%. AAV-SIRT1 maintains the transduction of SIRT1 over time and is selectively expressed in RGCs. Intravitreal injections of AAV-SIRT1 in a glaucoma model preserved visual function, increased RGC survival, and reduced axonal degeneration compared with the control construct. Over-expression of SIRT1 through AAV-mediated gene transduction indicates a RGC-selective component of neuroprotection in multiple models of acute optic nerve degeneration. Results here show a neuroprotective effect of RGC-selective gene therapy in a chronic glaucoma model characterized by sustained elevation of IOP and subsequent RGC loss. Results suggest that this strategy may be an effective therapeutic approach for treating glaucoma, and warrants evaluation for the treatment of other chronic neurodegenerative diseases.


Asunto(s)
Glaucoma , Hipertensión Ocular , Humanos , Ratones , Animales , Células Ganglionares de la Retina/metabolismo , Presión Intraocular , Sirtuina 1/genética , Sirtuina 1/metabolismo , Glaucoma/genética , Glaucoma/terapia , Hipertensión Ocular/genética , Hipertensión Ocular/terapia , Terapia Genética/métodos , Modelos Animales de Enfermedad , Axones/metabolismo
6.
Biomolecules ; 12(6)2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35740955

RESUMEN

Optic neuritis (ON), the most common ocular manifestation of multiple sclerosis, is an autoimmune inflammatory demyelinating disease also characterized by degeneration of retinal ganglion cells (RGCs) and their axons, which commonly leads to visual impairment despite attempted treatments. Although ON disease etiology is not known, changes in the redox system and exacerbated optic nerve inflammation play a major role in the pathogenesis of the disease. Silent information regulator 1 (sirtuin-1/SIRT1) is a ubiquitously expressed NAD+-dependent deacetylase, which functions to reduce/prevent both oxidative stress and inflammation in various tissues. Non-specific upregulation of SIRT1 by pharmacologic and genetic approaches attenuates RGC loss in experimental ON. Herein, we hypothesized that targeted expression of SIRT1 selectively in RGCs using an adeno-associated virus (AAV) vector as a delivery vehicle is an effective approach to reducing neurodegeneration and preserving vision in ON. We tested this hypothesis through intravitreal injection of AAV7m8.SNCG.SIRT1, an AAV2-derived vector optimized for highly efficient SIRT1 transgene transfer and protein expression into RGCs in mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis that recapitulates optic neuritis RGC loss and axon demyelination. Our data show that EAE mice injected with a control vehicle exhibit progressive alteration of visual function reflected by decreasing optokinetic response (OKR) scores, whereas comparatively, AAV7m8.SNCG.SIRT1-injected EAE mice maintain higher OKR scores, suggesting that SIRT1 reduces the visual deficit imparted by EAE. Consistent with this, RGC survival determined by immunolabeling is increased and axon demyelination is decreased in the AAV7m8.SNCG.SIRT1 RGC-injected group of EAE mice compared to the mouse EAE counterpart injected with a vehicle or with control vector AAV7m8.SNCG.eGFP. However, immune cell infiltration of the optic nerve is not significantly different among all EAE groups of mice injected with either vehicle or AAV7m8.SNCG.SIRT1. We conclude that despite minimally affecting the inflammatory response in the optic nerve, AAV7m8-mediated SIRT1 transfer into RGCs has a neuroprotective potential against RGC loss, axon demyelination and vison deficits associated with EAE. Together, these data suggest that SIRT1 exerts direct effects on RGC survival and function.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Neuritis Óptica , Animales , Axones/metabolismo , Supervivencia Celular , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/terapia , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/patología , Neuritis Óptica/genética , Neuritis Óptica/terapia , Células Ganglionares de la Retina/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Regulación hacia Arriba
7.
Gene Ther ; 28(5): 256-264, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33589779

RESUMEN

SIRT1 prevents retinal ganglion cell (RGC) loss in models of optic neuropathy following pharmacologic activation or genetic overexpression. The exact mechanism of loss is not known, prior evidence suggests this is through oxidative stress to either neighboring cells or RGC specifically. We investigated the neuroprotective potential of RGC-selective SIRT1 gene therapy in the optic nerve crush (ONC) model. We hypothesized that AAV-mediated overexpression of SIRT1 in RGCs reduces RGC loss, thereby preserving visual function. Cohorts of C57Bl/6J mice received intravitreal injection of experimental or control AAVs using either a ganglion cell promoter or a constitutive promoter and ONC was performed. Visual function was examined by optokinetic response (OKR) for 7 days following ONC. Retina and optic nerves were harvested to investigate RGC survival by immunolabeling. The AAV7m8-SNCG.SIRT1 vector showed 44% transduction efficiency for RGCs compared with 25% (P > 0.05) by AAV2-CAG.SIRT1, and AAV7m8-SNCG.SIRT1 drives expression selectively in RGCs in vivo. Animals modeling ONC demonstrated reduced visual acuity compared to controls. Intravitreal delivery of AAV7m8-SNCG.SIRT1 mediated significant preservation of the OKR and RGC survival compared to AAV7m8-SNCG.eGFP controls, an effect not seen with the AAV2 vector. RGC-selective expression of SIRT1 offers a targeted therapy for an animal model with significant ganglion cell loss. Over-expression of SIRT1 through AAV-mediated gene transduction suggests a RGC selective component of neuro-protection using the ONC model. This study expands our understanding of SIRT1 mediated neuroprotection in the context of compressive or traumatic optic neuropathy, making it a strong therapeutic candidate for testing in all optic neuropathies.


Asunto(s)
Traumatismos del Nervio Óptico , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Compresión Nerviosa , Nervio Óptico , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/terapia , Células Ganglionares de la Retina , Sirtuina 1/genética
8.
Transl Vis Sci Technol ; 10(1): 8, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33505775

RESUMEN

Purpose: Traumatic optic neuropathy (TON) is often caused by blunt head trauma and has no currently effective treatment. Common animal models of TON induced by surgical crush injury are plagued by variability and do not mimic typical mechanisms of TON injury. Traumatic head impact models have recently shown evidence of TON, but the degree of head impact necessary to consistently induce TON is not well characterized, and it is examined here. Methods: Traumatic skull impacts to C57BL/6J mice were induced using an electromagnetic controlled impact device. One impact performed at two depths (mild and severe), as well as three and five repetitive impacts with an interconcussion interval of 48 hours, were tested. Optokinetic responses (OKRs) and retinal ganglion cell (RGC) loss were measured. Results: Five repetitive mild impacts significantly decreased OKR scores and RGC numbers compared with control mice 10 weeks after initial impact, with maximal pathology observed by 6 weeks and partial but significant loss present by 3 weeks. One severe impact induced similar TON. Three mild impacts also induced early OKR and RGC loss, but one mild impact did not. Equivalent degrees of TON were induced bilaterally, and a significant correlation was observed between OKR scores and RGC numbers. Conclusions: Repetitive, mild closed head trauma in mice induces progressive RGC and vision loss that worsens with increasing impacts. Translational Relevance: Results detail a reproducible model of TON that provides a reliable platform for studying potential treatments over a 3- to 6-week time course.


Asunto(s)
Traumatismos Cerrados de la Cabeza , Traumatismos del Nervio Óptico , Animales , Modelos Animales de Enfermedad , Traumatismos Cerrados de la Cabeza/complicaciones , Ratones , Ratones Endogámicos C57BL , Células Ganglionares de la Retina
9.
PLoS One ; 16(1): e0243862, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33406093

RESUMEN

ST266 is the biological secretome of cultured Amnion-derived Multipotent Progenitor cells containing multiple growth factors and cytokines. While intranasally-administered ST266 improves the phenotype in experimental optic neuritis, specific ST266 components mediating these effects are not known. We compared the effects of ST266 with and without removal of large molecular weight proteins both in vitro and in the multiple sclerosis model experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice. Mice were treated daily with intranasal vehicle, ST266 or lower molecular weight fraction of ST266. Retinal ganglion cells were counted in isolated retinas, and optic nerves were assessed for inflammation and demyelination. ST266 treatment significantly improved retinal ganglion cell survival and reduced optic nerve demyelination in EAE mice. The lower molecular weight ST266 fraction significantly improved optic nerve demyelination, but only showed a trend towards improved retinal ganglion cell survival. ST266 fractions below 50kDa increased Schwann cell proliferation in vitro, but were less effective than non-fractionated ST266. Demyelination attenuation was partially associated with the lower molecular weight ST266 fraction, but removal of higher molecular weight biomolecules from ST266 diminishes its neuroprotective effects, suggesting at least some high molecular weight proteins play a role in ST266-mediated neuroprotection.


Asunto(s)
Amnios/citología , Células Madre Multipotentes/citología , Neuroprotección , Animales , Proliferación Celular , Enfermedades Desmielinizantes/complicaciones , Enfermedades Desmielinizantes/patología , Encefalomielitis Autoinmune Experimental/complicaciones , Encefalomielitis Autoinmune Experimental/patología , Femenino , Ratones Endogámicos C57BL , Peso Molecular , Glicoproteína Mielina-Oligodendrócito , Nervio Óptico/patología , Neuritis Óptica/complicaciones , Neuritis Óptica/patología , Péptidos , Células Ganglionares de la Retina/patología , Células de Schwann/patología
10.
Neurotherapeutics ; 18(1): 448-459, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33067748

RESUMEN

The human amnion has been used for decades in wound healing, particularly burns. Amnion epithelial cells (AECs) have been the focus of extensive research based on their possible pluripotent differentiation ability. A novel, cultured cell population derived from AECs, termed human amnion-derived multipotent progenitor (AMP) cells, secrete numerous cytokines and growth factors that enhance tissue regeneration and reduce inflammation. This AMP cell secretome, termed ST266, is a unique biological solution that accumulates in eyes and optic nerves following intranasal delivery, resulting in selective suppression of optic neuritis in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis, but not myelitis at the administered dose. We tested the hypothesis that systemic AMP cell administration could suppress both optic neuritis and myelitis in EAE. Intravenous and intraperitoneal administration of AMP cells significantly reduced ascending paralysis and attenuated visual dysfunction in EAE mice. AMP cell treatment increased retinal ganglion cell (RGC) survival and decreased optic nerve inflammation, with variable improvement in optic nerve demyelination and spinal cord inflammation and demyelination. Results show systemic AMP cell administration inhibits RGC loss and visual dysfunction similar to previously demonstrated effects of intranasally delivered ST266. Importantly, AMP cells also promote neuroprotective effects in EAE spinal cords, marked by reduced paralysis. Protective effects of systemically administered AMP cells suggest they may serve as a potential novel treatment for multiple sclerosis.


Asunto(s)
Células Madre Multipotentes/trasplante , Mielitis/terapia , Neuritis Óptica/terapia , Amnios/citología , Animales , Enfermedades Desmielinizantes/terapia , Encefalomielitis Autoinmune Experimental/terapia , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Células Ganglionares de la Retina/metabolismo , Médula Espinal/patología
11.
J Virol ; 94(14)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32404525

RESUMEN

Mouse hepatitis virus (MHV) is a murine betacoronavirus (m-CoV) that causes a wide range of diseases in mice and rats, including hepatitis, enteritis, respiratory diseases, and encephalomyelitis in the central nervous system (CNS). MHV infection in mice provides an efficient cause-effect experimental model to understand the mechanisms of direct virus-induced neural-cell damage leading to demyelination and axonal loss, which are pathological features of multiple sclerosis (MS), the most common disabling neurological disease in young adults. Infiltration of T lymphocytes, activation of microglia, and their interplay are the primary pathophysiological events leading to disruption of the myelin sheath in MS. However, there is emerging evidence supporting gray matter involvement and degeneration in MS. The investigation of T cell function in the pathogenesis of deep gray matter damage is necessary. Here, we employed RSA59 (an isogenic recombinant strain of MHV-A59)-induced experimental neuroinflammation model to compare the disease in CD4-/- mice with that in CD4+/+ mice at days 5, 10, 15, and 30 postinfection (p.i.). Viral titer estimation, nucleocapsid gene amplification, and viral antinucleocapsid staining confirmed enhanced replication of the virions in the absence of functional CD4+ T cells in the brain. Histopathological analyses showed elevated susceptibility of CD4-/- mice to axonal degeneration in the CNS, with augmented progression of acute poliomyelitis and dorsal root ganglionic inflammation rarely observed in CD4+/+ mice. Depletion of CD4+ T cells showed unique pathological bulbar vacuolation in the brain parenchyma of infected mice with persistent CD11b+ microglia/macrophages in the inflamed regions on day 30 p.i. In summary, the current study suggests that CD4+ T cells are critical for controlling acute-stage poliomyelitis (gray matter inflammation), chronic axonal degeneration, and inflammatory demyelination due to loss of protective antiviral host immunity.IMPORTANCE The current trend in CNS disease biology is to attempt to understand the neural-cell-immune interaction to investigate the underlying mechanism of neuroinflammation, rather than focusing on peripheral immune activation. Most studies in MS are targeted toward understanding the involvement of CNS white matter. However, the importance of gray matter damage has become critical in understanding the long-term progressive neurological disorder. Our study highlights the importance of CD4+ T cells in safeguarding neurons against axonal blebbing and poliomyelitis from murine betacoronavirus-induced neuroinflammation. Current knowledge of the mechanisms that lead to gray matter damage in MS is limited, because the most widely used animal model, experimental autoimmune encephalomyelitis (EAE), does not present this aspect of the disease. Our results, therefore, add to the existing limited knowledge in the field. We also show that the microglia, though important for the initiation of neuroinflammation, cannot establish a protective host immune response without the help of CD4+ T cells.


Asunto(s)
Axones/inmunología , Axones/metabolismo , Antígenos CD4/deficiencia , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Virus de la Hepatitis Murina/fisiología , Poliomielitis/etiología , Animales , Axones/patología , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Infecciones por Coronavirus/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/inmunología , Ganglios Espinales/inmunología , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Ratones
12.
Sci Rep ; 9(1): 11664, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406150

RESUMEN

Dysregulation of iron metabolism, and resultant cytotoxicity, has been implicated in the pathogenesis of multiple sclerosis (MS) and other neurodegenerative processes. Iron accumulation promotes cytotoxicity through various mechanisms including oxidative stress and glutamate toxicity, and occurs in both MS patients and in the experimental autoimmune encephalomyelitis (EAE) model of MS. Divalent Metal Transporter1, a major iron importer in cells, is stimulated by signaling of Dexras1, a small G protein member of the Ras family. Dexras1 is activated by S-nitrosylation by nitric oxide (NO) produced by either inducible nitric oxide synthase in activated microglia/macrophages or neuronal nitric oxide synthase in neurons. Here we show Dexras1 exacerbates oxidative stress-induced neurodegeneration in experimental optic neuritis, an inflammatory demyelinating optic nerve condition that occurs in MS and EAE. Dexras1 deletion, as well as treatment with the iron chelator deferiprone, preserves vision and attenuates retinal ganglion cell (RGC) and axonal loss during EAE optic neuritis. These results suggest that iron entry triggered by NO-activated Dexras1 signaling is a potential mechanism of neuronal death in experimental optic neuritis. The current data suggest modulation of Dexras1 signaling and iron chelation are potential novel treatment strategies for optic neuritis and MS, and possibly other optic neuropathies as well.


Asunto(s)
Encefalomielitis Autoinmune Experimental/complicaciones , Hierro/metabolismo , Esclerosis Múltiple/complicaciones , Neuritis Óptica/prevención & control , Proteínas ras/metabolismo , Animales , Quelantes/administración & dosificación , Deferiprona/administración & dosificación , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Ratones , Ratones Noqueados , Esclerosis Múltiple/patología , Óxido Nítrico/metabolismo , Neuritis Óptica/etiología , Neuritis Óptica/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas ras/genética
13.
J Neuroophthalmol ; 39(2): 191-199, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30829880

RESUMEN

INTRODUCTION: Previous studies have shown that intranasally administered ST266, a novel biological secretome of amnion-derived multipotent progenitor cells containing multiple growth factors and anti-inflammatory cytokines, attenuated visual dysfunction and prevented retinal ganglion cell (RGC) loss in experimental optic neuritis. Long-term effects and dose escalation studies examined here have not been reported previously. METHODS: Optic neuritis was induced in the multiple sclerosis model experimental autoimmune encephalomyelitis (EAE). EAE and control mice were treated once or twice daily with intranasal placebo/vehicle or ST266 beginning after onset of optic neuritis for either 15 days or continuously until sacrifice. Visual function was assessed by optokinetic responses (OKRs). RGC survival and optic nerve inflammation and demyelination were measured. RESULTS: Both once and twice daily continuous intranasal ST266 treatment from disease onset to 56 days after EAE induction significantly increased OKR scores, decreased RGC loss, and reduced optic nerve inflammation and demyelination compared with placebo (saline, nonspecific protein solution, or cell culture media)-treated EAE mice. ST266 treatment given for just 15 days after disease onset, then discontinued, only delayed OKR decreases, and had limited effects on RGC survival and optic nerve inflammation 56 days after disease induction. CONCLUSIONS: ST266 is a potential neuroprotective therapy to prevent RGC damage, and intranasal delivery warrants further study as a novel mechanism to deliver protein therapies for optic neuropathies. Results suggest that once daily ST266 treatment is sufficient to sustain maximal benefits and demonstrate that neuroprotective effects promoted by ST266 are specific to the combination of factors present in this complex biologic therapy.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Neuritis Óptica/prevención & control , Enfermedades de la Retina/prevención & control , Células Ganglionares de la Retina/efectos de los fármacos , Administración Intranasal , Amnios , Animales , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre Multipotentes/metabolismo , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/metabolismo , Nistagmo Optoquinético/fisiología , Neuritis Óptica/fisiopatología , Enfermedades de la Retina/fisiopatología , Células Ganglionares de la Retina/fisiología , Agudeza Visual/fisiología
14.
Artículo en Inglés | MEDLINE | ID: mdl-30234031

RESUMEN

Neurotropic strains of mouse hepatitis virus (MHV) induce acute inflammation and chronic demyelination in the spinal cord and optic nerves mediated by axonal spread following intracranial inoculation in mice, with pathologic features similar to the human demyelinating disease multiple sclerosis. Spinal cord demyelination is also induced following intranasal inoculation with neurotropic MHV strains, however much higher viral doses are required as compared to intracranial inoculation. Recently, it was shown that intranasal administration of low concentrations of proteins leads to significant, rapid accumulation of protein in the optic nerve and in the eye, with only low levels reaching spinal cord and other brain regions. Thus, we examined whether intranasal inoculation with MHV at doses equivalent to those given intracranially could induce optic neuritis-inflammation, demyelination and loss of retinal ganglion cells (RGCs) in the optic nerve with or without inducing spinal cord demyelination. Four week old male C57BL/6J mice were inoculated intracranially with the recombinant demyelinating strain RSA59, or intranasally with RSA59 or the non-demyelinating strain RSMHV2 as control. One month post-inoculation, mice inoculated intracranially with RSA59 had significant myelin loss in both spinal cord and optic nerves, with significant loss of RGCs as well, consistent with prior studies. As expected, intranasal inoculation with RSA59 failed to induce demyelination in spinal cord; however, it also did not induce optic nerve demyelination. No acute inflammation was found, and no viral antigen was detected, in the optic nerve or retina 1 day after inoculation. Results confirm the neurotropic effects of RSA59 following intracranial inoculation, and suggest that direct infection with axonal transport of virus from brain to spinal cord and optic nerve is required to induce demyelinating disease. These studies suggest that MHV does not selectively concentrate in optic nerve and retina to sufficient levels to induce demyelination following intranasal inoculation. Intracranial inoculation should continue to be considered a preferred method for studies of MHV-induced optic neuritis and central nervous system (CNS) demyelinating disease.


Asunto(s)
Modelos Animales de Enfermedad , Esclerosis Múltiple/patología , Virus de la Hepatitis Murina/crecimiento & desarrollo , Neuritis Óptica/patología , Administración Intranasal , Animales , Supervivencia Celular , Inyecciones Intraventriculares , Ratones Endogámicos C57BL , Nervio Óptico/patología , Células Ganglionares de la Retina/patología , Médula Espinal/patología
15.
Invest Ophthalmol Vis Sci ; 59(6): 2470-2477, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29847652

RESUMEN

Purpose: Intranasally delivered ST266, the biological, proteinaceous secretome of amnion-derived multipotent progenitor cells, reduces retinal ganglion cell (RGC) loss, optic nerve inflammation, and demyelination in experimental optic neuritis. This unique therapy and novel administration route delivers numerous cytokines and growth factors to the eye and optic nerve, suggesting a potential to also treat other optic neuropathies. Thus, ST266-mediated neuroprotection was examined following traumatic optic nerve injury. Methods: Optic nerve crush injury was surgically induced in C57BL/6J mice. Mice were treated daily with intranasal PBS or ST266. RGC function was assessed by optokinetic responses (OKRs), RGCs were counted, and optic nerve sections were stained with luxol fast blue and anti-neurofilament antibodies to assess myelin and RGC axon damage. Results: Intranasal ST266 administered daily for 5 days, beginning at the time that a 1-second optic nerve crush was performed, significantly attenuated OKR decreases. Furthermore, ST266 treatment reduced damage to RGC axons and myelin within optic nerves, and blocked RGC loss. Following a 4-second optic nerve crush, intranasal ST266 increased RGC survival and showed a trend toward reduced RGC axon and myelin damage. Ten days following optic nerve crush, ST266 prevented myelin damage, while also inducing a trend toward increased RGC survival and visual function. Conclusions: ST266 significantly attenuates traumatic optic neuropathy. Neuroprotective effects of this unique combination of biologic molecules observed here and previously in optic neuritis suggest potential broad application for preventing neuronal damage in multiple optic nerve disorders. Furthermore, results support intranasal delivery as a novel, noninvasive therapeutic modality for eyes and optic nerves.


Asunto(s)
Amnios/metabolismo , Citocinas/administración & dosificación , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Traumatismos del Nervio Óptico/tratamiento farmacológico , Células Ganglionares de la Retina/efectos de los fármacos , Administración Intranasal , Animales , Axones/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Compresión Nerviosa , Nistagmo Optoquinético/fisiología , Traumatismos del Nervio Óptico/fisiopatología
16.
Invest Ophthalmol Vis Sci ; 59(3): 1212-1220, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29494741

RESUMEN

Purpose: Optic neuritis is a condition defined by autoimmune-mediated demyelination of the optic nerve and death of retinal ganglion cells. SIRT1 and NRF2 stimulate anti-inflammatory mechanisms and have previously demonstrated therapeutic value in preclinical models of neurodegenerative disease. Here we investigated the neuroprotective potential of SIRT1 or NRF2 gene transfer using adeno-associated virus (AAV) vectors in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Methods: C57Bl/6J mice were administered intravitreal doses of AAV2 vectors and immunized to induce EAE symptoms. Visual function was examined by recording the optokinetic response (OKR) just prior to EAE induction and once every 7 days postinduction for 7 weeks. Retina and optic nerves were harvested to investigate retinal ganglion cell survival (immunolabeling with Brn3a antibodies); inflammation (hematoxylin and eosin staining); and demyelination (luxol fast blue staining). Results: Animals modeling EAE demonstrate reduced visual acuity compared to sham-induced controls. Intravitreal delivery of AAV2-NRF2 did not preserve visual function. However, AAV2-SIRT1 mediated significant preservation of the OKR compared to AAV2-eGFP controls. Treatment with AAV2-NRF2 promoted RGC survival while AAV2-SIRT1 mediated an upward trend in protection compared to vehicle and AAV2-eGFP controls. Neither NRF2 nor SIRT1 gene augmentation was able to suppress optic nerve inflammation or demyelination. Conclusions: AAV-mediated overexpression of NRF2 or SIRT1 within RGCs mediates distinct neuroprotective effects upon visual function and RGC survival. This study expands our understanding of SIRT1 and NRF2-mediated neuroprotection in the context of MS pathogenesis and optic neuropathies.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Terapia Genética/métodos , Factor 2 Relacionado con NF-E2/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Neuritis Óptica/terapia , Células Ganglionares de la Retina/efectos de los fármacos , Sirtuina 1/uso terapéutico , Animales , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Inyecciones Intravítreas , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/complicaciones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/metabolismo , Células Ganglionares de la Retina/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Agudeza Visual
17.
Ophthalmic Plast Reconstr Surg ; 34(3): 201-204, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28369019

RESUMEN

PURPOSE: Recent publications have reported the adverse effects of prostaglandin analogues on the periocular tissues. These medications may cause periorbital lipodystrophy, enophthalmos, and deepening of the superior sulcus deformity. While these effects may have adverse consequences for some patients, the atrophy of the periorbital fat may have a useful role in diseases that lead to orbital and periorbital fat hypertrophy such as thyroid eye disease. In this pilot study, the authors investigated the effects of retrobulbar bimatoprost injection on the intraocular pressure and orbital fat in a rat animal model. METHODS: Three rats were sedated and intraocular pressure was measured. A 0.1 ml aliquot of bimatoprost was injected into the right orbit of all rats. In the left orbit, 0.1 ml of phosphate-buffered saline was injected as a control. Three weeks later, all rats were sedated and intraocular pressure was measured before euthanizing. Routine histologic staining was performed and thin sections through the intraconal orbital fat were obtained. Density of intraconal adipocytes was measured and adipocyte heterogeneity was determined using a computer image analysis algorithm. RESULTS: The specimens injected with bimatoprost demonstrated atrophy of orbital fat with significantly increased adipocyte density (p = 0.009) and heterogeneity (p = 0.008) when compared with control. Intraocular pressure was not significantly decreased at 3 weeks after injection of retrobulbar bimatoprost. CONCLUSIONS: In this pilot study, orbital injection of bimatoprost demonstrated atrophy of intraconal adipocytes when compared with control orbits injected with saline. The orbits injected with bimatoprost were noted to have smaller, more heterogeneous adipocytes that were densely packed in the intraconal space. The study limitations include the small sample size, which limited the ability for us to make conclusions about the effect on intraocular pressure. Nevertheless, the findings presented suggest that retrobulbar bimatoprost may present a nonsurgical alternative to induce atrophy of the orbital fat without inducing inflammation or hypotony.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Antihipertensivos/farmacología , Bimatoprost/farmacología , Órbita/efectos de los fármacos , Adipocitos/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Presión Intraocular/efectos de los fármacos , Masculino , Proyectos Piloto , Ratas , Ratas Endogámicas Lew
18.
Oxid Med Cell Longev ; 2017: 7180632, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28680531

RESUMEN

The ability of novel mitochondrial uncoupler prodrug of 2,4-dinitrophenol (DNP), MP201, to prevent neuronal damage and preserve visual function in an experimental autoimmune encephalomyelitis (EAE) model of optic neuritis was evaluated. Optic nerve inflammation, demyelination, and axonal loss are prominent features of optic neuritis, an inflammatory optic neuropathy often associated with the central nervous system demyelinating disease multiple sclerosis. Currently, optic neuritis is frequently treated with high-dose corticosteroids, but treatment fails to prevent permanent neuronal damage and associated vision changes that occur as optic neuritis resolves, thus suggesting that additional therapies are required. MP201 administered orally, once per day, attenuated visual dysfunction, preserved retinal ganglion cells (RGCs), and reduced RGC axonal loss and demyelination in the optic nerves of EAE mice, with limited effects on inflammation. The prominent mild mitochondrial uncoupling properties of MP201, with slow elimination of DNP, may contribute to the neuroprotective effect by modulating the entire mitochondria's physiology directly. Results suggest that MP201 is a potential novel treatment for optic neuritis.


Asunto(s)
2,4-Dinitrofenol/metabolismo , Mitocondrias/metabolismo , Neuritis Óptica/genética , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Neuritis Óptica/metabolismo , Profármacos
19.
Sci Rep ; 7: 41768, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28139754

RESUMEN

The ability of a novel intranasally delivered amnion cell derived biologic to suppress inflammation, prevent neuronal damage and preserve neurologic function in the experimental autoimmune encephalomyelitis animal model of multiple sclerosis was assessed. Currently, there are no existing optic nerve treatment methods for disease or trauma that result in permanent vision loss. Demyelinating optic nerve inflammation, termed optic neuritis, induces permanent visual dysfunction due to retinal ganglion cell damage in multiple sclerosis and experimental autoimmune encephalomyelitis. ST266, the biological secretome of Amnion-derived Multipotent Progenitor cells, contains multiple anti-inflammatory cytokines and growth factors. Intranasally administered ST266 accumulated in rodent eyes and optic nerves, attenuated visual dysfunction, and prevented retinal ganglion cell loss in experimental optic neuritis, with reduced inflammation and demyelination. Additionally, ST266 reduced retinal ganglion cell death in vitro. Neuroprotective effects involved oxidative stress reduction, SIRT1-mediated mitochondrial function promotion, and pAKT signaling. Intranasal delivery of neuroprotective ST266 is a potential novel, noninvasive therapeutic modality for the eyes, optic nerves and brain. The unique combination of biologic molecules in ST266 provides an innovative approach with broad implications for suppressing inflammation in autoimmune diseases, and for preventing neuronal damage in acute neuronal injury and chronic neurodegenerative diseases such as multiple sclerosis.


Asunto(s)
Amnios/metabolismo , Factores Biológicos/administración & dosificación , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Administración Intranasal , Animales , Axones/metabolismo , Supervivencia Celular/efectos de los fármacos , Enfermedades Desmielinizantes , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Femenino , Ratones , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Nervio Óptico/metabolismo , Nervio Óptico/patología , Neuritis Óptica/etiología , Neuritis Óptica/metabolismo , Neuritis Óptica/patología , Ratas , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Transducción de Señal/efectos de los fármacos
20.
Ophthalmic Plast Reconstr Surg ; 32(4): 302-4, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26068557

RESUMEN

PURPOSE: Retrobulbar injections of alcohol and chlorpromazine are used for the treatment of blind, painful eyes. There have been reports of inflammation after retrobulbar injections of these agents, but the histologic effects are not well characterized. A clinical case with histopathologic confirmation of inflammation after retrobulbar alcohol injection led the authors to develop a rat model to examine these effects. METHODS: Adult Lewis rats were given retrobulbar injections of either 0.1 ml of absolute alcohol or 25 mg/ml chlorpromazine in the right orbit, and 0.1 ml of saline in the left orbit as a control. Rats were euthanized, perfused, and postfixed at 1 to 2 weeks after injection. Exenterated orbital tissue was sectioned for histologic staining. Slides were reviewed by a masked ocular pathologist who evaluated the level of orbital inflammation. RESULTS: Histopathology demonstrated foci of granulomatous inflammation in the orbit of the patient and similar inflammation in the rat orbits injected with retrobulbar alcohol. In the chlorpromazine group, only 1 rat demonstrated small foci of inflammation, while the control orbits injected with saline showed no inflammation. On blinded qualitative analysis, the orbits receiving retrobulbar alcohol had greater inflammation than the orbits receiving either saline or chlorpromazine. CONCLUSIONS: Our findings in this preclinical pilot study suggest that retrobulbar alcohol injections incite significant orbital inflammation, whereas retrobulbar chlorpromazine induces little or no inflammation. This potential inflammatory response should be considered when selecting an agent for pain management, particularly if future orbital surgery is anticipated.


Asunto(s)
Clorpromazina/administración & dosificación , Etanol/administración & dosificación , Dolor Ocular/tratamiento farmacológico , Seudotumor Orbitario/tratamiento farmacológico , Seudotumor Orbitario/patología , Anciano de 80 o más Años , Animales , Antiinfecciosos Locales/administración & dosificación , Biopsia , Modelos Animales de Enfermedad , Antagonistas de Dopamina/administración & dosificación , Dolor Ocular/diagnóstico , Dolor Ocular/etiología , Femenino , Humanos , Inyecciones , Masculino , Órbita , Dimensión del Dolor , Proyectos Piloto , Ratas , Ratas Endogámicas Lew , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...