Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(6): e0207323, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37889056

RESUMEN

IMPORTANCE: Gastrointestinal microorganisms are critical to the survival and adaptation of hosts, and there are few studies on the differences and functions of gastrointestinal microbes in widely distributed species. This study investigated the gut microbes of two ophiuroid species (Ophiura sarsii and its subspecies O. sarsii vadicola) in cold-water habitats of the Northern Pacific Ocean. The results showed that a combination of host and environmental factors shapes the intestinal microbiota of ophiuroids. There was a high similarity in microbial communities between the two groups living in different regions, which may be related to their similar ecological niches. These microorganisms played a vital role in the ecological success of ophiuroids as the foundation for their adaptation to cold-water environments. This study revealed the complex relationship between hosts and their gut microbes, providing insights into the role they play in the adaptation and survival of marine species.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Bacterias , Tracto Gastrointestinal , Océano Pacífico
2.
Mar Environ Res ; 190: 106066, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37481878

RESUMEN

Deployment of artificial reefs (ARs) has become popular technique to create new hard-bottom habitats, increase biodiversity and richness for fisheries. We compared the faunal community structure and food web structure associated with before and after fishing moratorium between ARs and non-ARs in Wanshan Island, Pearl River Estuary using stable isotope techniques. Community composition showed higher differences between ARs and non-ARs. The range of δ13C and δ15N of different functional groups can distinguish the pelagic and benthic trophic pathways of the food web in reef-or-not area before and after fishing moratorium. The isotopic niches of entire faunal, as well as individual functional groups, overlapped less between ARs and non-ARs in Wanshan Island, which makes the isotopic functional indices non-equivalent. The total convex hull area (TA) of ARs was larger than that of non-ARs, indicating that nutrient pathways of ARs were more diverse. Overall, however, these results suggest that trophic structure was convergence between ARs and non-ARs, and differences before and after fishing moratorium, possibly due to seasonal differences. Finally, it was shown that the construction of ARs had a weak effect on the restoration of fishery resources in this area, which might be related to lack of further management, or even similar community composition to non-ARs areas.


Asunto(s)
Estuarios , Ríos , Animales , Caza , Ecosistema , Isótopos , Biota , Explotaciones Pesqueras , Peces
3.
Aquat Toxicol ; 258: 106506, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36989927

RESUMEN

Tributyltin (TBT), a highly toxic and persistent organic pollutant, is widely distributed in coastal waters. Liza haematocheila (L. haematocheila) is one of bony fish distributing coincident with TBT, and exposure risk of TBT to this fish is unknown. In this study, L. haematocheila was exposed to TBT of 0, 3.4, 6.8, and 17.2 µg/L for 48 h to explore hepatic response mechanism. Our results showed that Sn content in livers increased after 48 h of exposure. HSI and histological changes indicated that TBT suppressed liver development of L. haematocheila. TBT reduced ATPase activities. The increased RB in blood and the reduced TBC were measured after exposure to TBT. T-AOC and antioxidant enzymes SOD, CAT, and GPx activities were inhibited while MDA content was increased. Liver cells showed apoptosis characteristics after TBT exposure. Furthermore, transcriptome analysis of livers was performed and the results showed energy metabolism-related GO term (such as ATPase complex and ATPase dependent transmembrance transport complex), oxidative stress-related GO term (such as Celllular response to oxidative stress and Antioxidant activity), and apoptosis-related GO term (such as Regulation of cysteine-type endopeptidase activity involved in apoptosic signaling pathway). Moreover, we found six energy metabolism-related differentially expressed genes (DEGs) including three up-regulated DEGs (atnb233, cftr, and prkag2) and three down-regulated DEGs (acss1, abcd2, and smarcb1); five oxidative stress-related DEGs including one up-regulated DEG (mmp9) and four down-regulated DEG (prdx5, hsp90, hsp98, and gstf9); as well as six apoptosis-related DEGs including five up-regulated DEGs (casp8, cyc, apaf1, hccs, and dapk3) and one down-regulated DEG (bcl2l1). Our transcriptome data above further confirmed that acute stress of TBT led energy metabolic disturbance, oxidative stress, and apoptosis in L. haematocheila livers.


Asunto(s)
Smegmamorpha , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo , Antioxidantes/metabolismo , Hígado , Smegmamorpha/metabolismo , Apoptosis , Adenosina Trifosfatasas/metabolismo
4.
J Environ Manage ; 335: 117515, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36840997

RESUMEN

Marine ranching has been widely considered as a new mode of marine fishery production. Marine ranching ecological security (MRES) is the basis and premise to ensure the sustainable utilization of marine ranching functions. In this study, an MRES early warning system was constructed based on comprehensive marine ranching ecological security index (CMRESI) and system dynamic model to reveal the main factors affecting the development of marine ranching and explore the changes in MRES under different future development scenarios in China's coastal areas from 2011 to 2035. The results showed that (1) the mean CMRESI of China was only 0.3265 and spatial heterogeneity was significant, showing a general security state; (2) coupling and coordination degree of MRES subsystems was high in Jiangsu, Fujian, Shandong, and Guangdong, and resources was a major constraint on the coordinated development of MRES in the study area (63.6%); (3) Under the ecological priority development scenario, the CMRESI will be the highest in 2035; however, 27% of MRES (in Jiangsu, Fujian, and Hainan) will continue to issue serious early warnings. This study could provide a reference for construction planning, management maintenance, and decision-making of marine ranching.


Asunto(s)
Ecosistema , Biología Marina , China , Explotaciones Pesqueras , Conservación de los Recursos Naturales/métodos
5.
Fish Shellfish Immunol ; 130: 501-511, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36162773

RESUMEN

Liza haematocheila is exposed to various chemical contaminants from anthropogenic sources, including tributyltin chloride (TBTC). Yet the toxicity mechanism of TBTC on haarder remains unclear. The haarder was exposed to different doses (0, 10%, 20%, and 50% of LC50-96 h) of TBTC. In this study, the results revealed its high bioaccumulation in the livers and significant alteration for development. The activities of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase decreased after 96-h exposure to TBTC, this accompanied by an increased malondialdehyde level. TBTC exposure caused the intense production of reactive oxygen species, a reduction in total blood cell count in serum, and apoptosis-related alterations in livers, indicating that enhanced oxidative stress occurred in the process of TBTC exposure. Histological results revealed angiorrhexis and infiltration of inflammatory cells, vacuolar degeneration of hepatocytes in the livers, and swelling, fusion, and disintegration of gill organs. Interestingly, the obtained transcriptional profiles indicated that high doses of TBTC caused energy disorder, apoptosis, and adipogenesis restriction mediated by cytokines and adipokines in Jak-STAT and adipocytokine signaling pathways. In summary, acute exposure to high doses of TBTC could impair the antioxidant system and pathways related to energy, apoptosis and adipogenesis, eventually posing a serious challenge to the fitness of haarder individuals and its fish populations as marine resources.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Adipoquinas/metabolismo , Animales , Antioxidantes/metabolismo , Bioacumulación , Catalasa/metabolismo , Citocinas/metabolismo , Glutatión Peroxidasa/metabolismo , Malondialdehído , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Compuestos de Trialquiltina
6.
Mar Pollut Bull ; 179: 113744, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35580442

RESUMEN

Discarded plastic bag is a main component of marine debris, posing potential threats to marine biota. This study was conducted to assess the potential effects of microplastics on juvenile Lates calcarifer. Fish were exposed via diet to two microplastic types from conventional polyethylene (PE) and biodegradable (Bio) plastic bags for 21 days. Antioxidative enzymes activity, intestinal microbiome and proteome were determined. PE and Bio microplastics were found to accumulate in gastrointestinal tracts, and no mortality was observed. Microplastics exposure did not induce significant antioxidant response except for the glutathione reductase (GR) modulation. Intestinal microbiome diversity decreased significantly in PE group based on Simpson index. Both types of microplastics induced proteome modulation by down-regulating proteins associated with immune homeostasis. Bio microplastics maintained higher intestinal microbial diversity and induced more proteins alteration than PE microplastics. This study provides toxicological insights into the impacts of conventional and biodegradable microplastics on juvenile L. calcarifer.


Asunto(s)
Microbiota , Perciformes , Contaminantes Químicos del Agua , Animales , Antioxidantes , Bioacumulación , Microplásticos , Plásticos , Polietileno , Proteoma , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
7.
Ecol Evol ; 12(5): e8903, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35592066

RESUMEN

The biological and ecological integrity of marine ecosystems in the Pearl River Estuary (PRE) has been compromised due to overfishing and water pollution. Fishing moratorium and artificial reef construction have been implemented in Wanshan and Miaowan for resource protection and restoration. Therefore, food web structure and trophic pathways of Wanshan, Miaowan, and Wailingding in different temporal and spatial situation will be determined using the Ecopath model, as well as the keystone species affecting these ecosystems, which can provide a basis for fishery management. The results showed that the energy transfer efficiency of IV and V trophic levels (TL) was higher than that of II and III-TL before and after fishing moratorium, and the energy transfer efficiency of artificial reefs II and III-TL was only slightly higher than that of nonartificial reefs in Wanshan. In addition, the mean values of ecosystem property indicators (consumption, respiration flow, total system throughput, and total biomass) after the fishing moratorium were significantly higher than those before the fishing moratorium. The average value of the ecosystem attribute indicators (consumption, respiration flow, total system throughput, and total biomass) of artificial reefs is lower than those of nonartificial reef areas, which may be related to the differences in community composition between artificial reefs and non-artificial reefs. Finally, Nemipterus japonicus and Gastrophysus spadiceus are keystone species that distinguish the Wanshan and Miaowan artificial reefs from other areas. Overall, the fishing moratorium has a positive effect on the short-term restoration of fishery resources, mainly restoring short-life cycle organisms. However, the construction of artificial reefs will be more conducive to the persistence of ecosystem restoration. In addition, reasonable proliferation, release and fishing of N. japonicus and G. spadiceus will be beneficial to the sustainable utilization of fishery resources.

8.
Comput Intell Neurosci ; 2022: 1978415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341195

RESUMEN

Under the background of market economy, engineering projects are faced with a lot of financial risks. If we cannot prevent them effectively, it will undoubtedly bring serious negative impact to the entire engineering management work. Therefore, it is particularly important to actively manage risks, identify and evaluate risks in a timely and correct manner, manage risks efficiently, and minimize risk losses. At the same time, the development of wireless communication technology has brought many new branches of engineering project management. Some problems in the process of risk management are often not handled by traditional empirical calculation or mathematical methods, so it is necessary to find an appropriate way to define and describe the nonlinear relationship between a large number of uncertain causes and risk losses. In order to match the changes in the background of the development of wireless communication technology, this paper studies the financial risk problems and countermeasures in the engineering management of convolutional neural networks. The financial risk prediction model in network engineering management is constructed, and the volume neural network algorithm referenced by it is tested. The test results are highly consistent with the expert assessment. In the research process, the combination of questionnaire survey and mathematical analysis method was adopted, the extreme value of risk factors was determined by questionnaire survey, and then the accuracy of prediction was verified by a mathematical model. After many calculations, it has been proved that the convolutional neural network simulation system based on the scientific node selection method has greatly improved the accuracy of risk assessment.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Modelos Teóricos
9.
Arch Microbiol ; 203(9): 5577-5589, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34436633

RESUMEN

Seagrass ecosystems are among the most productive marine ecosystems, and diazotrophic communities play a crucial role in sustaining the productivity and stability of such ecosystems by introducing fixed nitrogen. However, information concerning both total and active diazotrophic groups existing in different compartments of seagrass is lacking. This study comprehensively investigated the diversity, structure, and abundance of diazotrophic communities in different parts of the seagrass Halophila ovalis at the DNA and RNA level from clone libraries and real-time quantitative PCR. Our results indicated that nearly one-third of existing nitrogen-fixing bacteria were active, and their abundance might be controlled by nitrogen to phosphorus ratio (N:P). Deltaproteobacteria and Gammaproteobacteria were dominant groups among the total and active diazotrophic communities in all samples. These two groups accounted for 82.21% and 70.96% at the DNA and RNA levels, respectively. The genus Pseudomonas and sulfate-reducing bacteria (genera: Desulfosarcina, Desulfobulbus, Desulfocapsa, and Desulfopila) constituted the significant fraction of nitrogen-fixing bacteria in the seagrass ecosystem, playing an additional role in denitrification and sulfate reduction, respectively. Moreover, the abundance of the nitrogenase gene, nifH, was highest in seawater and lowest in rhizosphere sediments from all samples. This study highlighted the role of diazotropic communities in the subtropical seagrass ecosystem.


Asunto(s)
Bahías , Ecosistema , China , Genómica , Fijación del Nitrógeno , Agua de Mar
10.
Environ Sci Pollut Res Int ; 28(15): 19021-19033, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33394400

RESUMEN

Rhizosphere microbes are crucial to seagrass meadows because they promote plant growth and heath. However, information concerning the response of rhizosphere microorganisms in seagrass sediment in the presence of different nitrogen sources is lacking. Here, by means of high-throughput sequencing, we investigated how addition of inorganic nitrogen affects the rhizosphere microbiome of the tropical seagrass Thalassia hemperichii. A seagrass culture system was set up to conduct a nitrogen addition (ammonium and nitrate) simulation experiment. We found that the relative abundance of Proteobacteria and Bacteroidetes was increased in inorganic nitrogen-enriched samples, whereas that of Acidobacteria decreased under ammonium enrichment, especially after 35 days. High levels of inorganic nitrogen addition caused a significant decrease in the relative abundance of Desulfobacteraceae, Sulfurovaceae, and Spirochaetes, which are primarily involved in sulfur cycling. Additionally, the abundance of microbes in the seagrass rhizosphere reached the highest after the ammonium-enrichment treatment. Among the analyzed seagrass photosynthetic characteristics, seagrass leaves presented the highest light utility in treatments receiving nitrate, followed by the control groups and ammonium-enrichment groups. Moreover, 16S rRNA gene-predicted functional analysis suggested that some functions related to metabolism of amino acids and signal transduction were enriched in samples receiving high ammonium, whereas nitrate addition enriched predicted functions related to diseases. These findings provide new insights into the response of microbial communities to different types of nitrogen additions in seagrass ecosystems.


Asunto(s)
Microbiota , Rizosfera , Fertilización , Nitrógeno , ARN Ribosómico 16S/genética , Microbiología del Suelo
11.
Artículo en Inglés | MEDLINE | ID: mdl-33355529

RESUMEN

A Gram-stain-negative, motile, rod-shaped, non-endospore-forming, aerobic and halophilic bacterium, designated strain YCWA18T, was isolated from the sediment of Jimo-Daqiao saltern in China. This strain was able to grow at NaCl concentrations in the range 0.5-20 % (w/v) with optimum growth at 6 % (w/v) NaCl. Growth occurred at temperatures of 4-40 °C (optimum 28 °C) and pH 4.0-9.0 (optimum 7.0). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YCWA18T belonged to the genus Kushneria and shared the highest sequence similarity of 98.7 % with Kushneria sinocarnis DSM 23229T. Moreover, the phylogenetic analysis based on the 23S rRNA gene sequence also confirmed the phylogenetic position of this novel strain. The predominant fatty acids were C16 : 0, C17 : 0 cyclo and C12 : 0 3-OH. The major isoprenoid quinone was Q-9 (94.2 %) and the polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), an unidentified aminolipid (AL), an unidentified phospholipids (PL) and two unidentified lipids (L). The complete genome of strain YCWA18T consisted of a single, circular chromosome of 3 624 619 bp, with an average G+C content of 59.1 mol%. A genome-based phylogenetic tree constructed using an up-to-date bacterial core gene set (UBCG) showed that strain YCWA18T formed a clade with K. sinocarnis DSM 23229T. However, the level of the ANI and dDDH values between strain YCWA18T and K. sinocarnis DSM 23229T were 82.3 and 24.6 %, respectively, which were low enough to distinguish strain YCWA18T from K. sinocarnis DSM 23229T. Overall, based on the phenotypic, chemotaxonomic, phylogenetic and genomic analyses, strain YCWA18T represents a novel species of genus Kushneria. The name Kushneria phosphatilytica sp. nov. is proposed, with the type strain YCWA18T (=CGMCC 1.9149T=NCCB 100306T).


Asunto(s)
Sedimentos Geológicos/microbiología , Halomonadaceae/clasificación , Fosfatos/metabolismo , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Análisis de Secuencia de ADN
12.
Dev Comp Immunol ; 116: 103937, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33242570

RESUMEN

DM9 domain containing protein (DM9CP) is a recently identified pattern recognition molecules exiting in most organisms except plants. In the present study, a novel DM9-containing protein (CgDM9CP-3) was identified from Pacific oyster Crassostrea gigas with an open reading frame of 438 bp, encoding a polypeptide of 145 amino acids containing two tandem DM9 repeats. The deduced amino acid sequence of CgDM9CP-3 shared 52.4% and 58.6% identity with CgDM9CP-1 and CgDM9CP-2, respectively. The mRNA transcripts of CgDM9CP-3 were highest expressed in oyster gills and its protein was mainly distributed in cytomembrane of haemocytes. After the stimulations with Vibrio splendidus and mannose, the mRNA expression of CgDM9CP-3 in oyster gills was significantly up-regulated and reached the peak level at 12 h and 24 h (p < 0.05), which was 7.80-fold (p < 0.05) and 42.82-fold (p < 0.05) of that in the control group, respectively. The recombinant CgDM9CP-3 protein (rCgDM9CP-3) was able to bind LPS, PGN and d-Mannose, fungi Pichia pastoris and Yarrowia lipolytica, as well as gram-negative bacteria Escherichia coli, Vibrio anguillarum and V. splendidus in a Ca2+-dependent manner. Moreover, it could enhance the encapsulation of haemocytes and exhibited agglutination activity towards fungi P. pastoris and Y. lipolytica in vitro with Ca2+. These results suggested that CgDM9CP-3 not only acted as a PRR involved in the pathogen recognition, but also enhanced cellular encapsulation in oyster C. gigas.


Asunto(s)
Crassostrea/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Crassostrea/genética , Hongos/inmunología , Branquias/metabolismo , Bacterias Gramnegativas/inmunología , Hemocitos/inmunología , Hemocitos/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Fagocitosis , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Alineación de Secuencia
13.
Mar Pollut Bull ; 161(Pt A): 111735, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33080385

RESUMEN

A comprehensive evaluation system and model of Coastal Wetland Ecological Vulnerability (CWEV) was constructed and applied to reveal spatial heterogeneity of the ecological vulnerability of the Yellow River Delta Wetland (YRDW). The results showed that the score of the ecological vulnerability (EVS) of the YRDW was 0.49, which was generally at a medium vulnerability level. The wetland area of high vulnerability was up to 943km2, accounting for 35.2% of the total area, followed by the medium vulnerable area with an area of 750km2, accounting for 28.1% of the total area. From the coastline perpendicularly to the land, the "seaward" gradient effect gradually decreased, the vulnerability-increasing "hydrologic connectivity" effect increased with the distance from the river channel, and the "land source influence" effect gradually decayed along with the vulnerability of population and economy gathering areas.


Asunto(s)
Ríos , Humedales , China , Ecosistema
14.
J Biol Chem ; 293(50): 19317-19329, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30337365

RESUMEN

Human pluripotent stem cells hold great promise for improving regenerative medicine. However, a risk for tumor formation and difficulties in generating large amounts of subtype derivatives remain the major obstacles for clinical applications of stem cells. Here, we discovered that zinc finger E-box-binding homeobox 1 (ZEB1) is highly expressed upon differentiation of human embryonic stem cells (hESCs) into neuronal precursors. CRISPR/Cas9-mediated ZEB1 depletion did not impede neural fate commitment, but prevented hESC-derived neural precursors from differentiating into neurons, indicating that ZEB1 is required for neuronal differentiation. ZEB1 overexpression not only expedited neural differentiation and neuronal maturation, which ensured safer neural cell transplantation, but also facilitated the generation of excitatory cortical neurons, which were valuable for managing certain neurological disorders, such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Our study provides useful information on how human neural cells are generated, which may help in forming strategies for developing and improving replacement therapies for treating patients with neurological diseases.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias Humanas/citología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Encéfalo/citología , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Ratones , Neuronas/citología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/deficiencia , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
15.
Sci Total Environ ; 612: 720-727, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28866399

RESUMEN

The phytoplankton community structure is potentially influenced by both extrinsic effects originating from the surrounding environment and intrinsic effects relying on interspecific interactions between two species. However, few studies have simultaneously considered both types of effects and assessed the relative importance of these factors. In this study, we used data collected over nine months (August 2012-May 2013) from a typical subtropical reservoir in southeast China to analyze the temporal variation of its phytoplankton community structure and develop a quantitative understanding of the extrinsic and intrinsic effects on phytoplankton community dynamics. Significant temporal variations were observed in environmental variables as well as the phytoplankton and zooplankton communities, whereas their variational trajectories and directions were entirely different. Variance partitioning analysis showed that extrinsic factors significantly explained only 31% of the variation in the phytoplankton community, thus suggesting that these factors were incomplete predictors of the community structure. Random forest-based models showed that 48% of qualified responsible phytoplankton species were more accurately predicted by phytoplankton-only models, which revealed clear effects of interspecific species-to-species interactions. Furthermore, we used association networks to model the interactions among phytoplankton, zooplankton and the environment. Network comparisons indicated that interspecific interactions were widely present in the phytoplankton community and dominated the network rather than those between phytoplankton and extrinsic factors. These findings expand the current understanding of the underlying mechanisms that govern phytoplankton community dynamics.

16.
Environ Sci Pollut Res Int ; 24(30): 23704-23713, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28864971

RESUMEN

Vibrio bacteria live in both marine and freshwater habitats and are associated with aquatic animals. Vibrio vulnificus is a pathogenic bacterium that infects people and livestock. It is usually found in offshore waters or within fish and shellfish. This study presents a comparative proteomic analysis of the outer membrane protein (OMP) changes in V. vulnificus proteins after stimulation with sewage from sewage drains. Using two-dimensional electrophoresis followed by MALDI-TOF MS/MS, 32 protein spots with significant differences in abundance were identified and characterized. These identified proteins were found to be involved in various functional categories, including catalysis, transport, membrane proteins progresses, receptor activity, energy metabolism, cytokine activity, and protein metabolism. The mRNA expression levels of 12 differential proteins were further assessed by qRT-PCR. Seven genes including carboxypeptidase, hemoglobin receptor, succinate dehydrogenase iron-sulfur subunit, ATP synthase subunit alpha, thioredoxin, succinyl-CoA synthetase subunit, and alanine dehydrogenase were downregulated upon stimulation, whereas the protein expression levels HupA receptor, type I secretion outer membrane protein, glutamine synthetase, superoxide dismutase, OmpU, and VuuA were upregulated. 1H NMR spectra showed 18 dysregulated metabolites from V. vulnificus after the sewage stimulation and the pathogenicity was enhanced after that.


Asunto(s)
Hierro/química , Succinato Deshidrogenasa/química , Vibrio/metabolismo , Animales , Acuicultura , Enfermedades de los Peces , Hierro/metabolismo , Metabolómica , Proteómica , Espectroscopía de Protones por Resonancia Magnética , Aguas del Alcantarillado , Succinato Deshidrogenasa/metabolismo , Espectrometría de Masas en Tándem , Vibrio/química , Vibrio vulnificus , Virulencia
17.
Sci Rep ; 6: 37406, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27869180

RESUMEN

Silver nanoparticles (AgNPs) demonstrating good antimicrobial activity are widely used in many fields. However, the impact of AgNPs on the community structures of marine biofilms that drive biogeochemical cycling processes and the recruitment of marine invertebrate larvae remains unknown. Here, we employed MiSeq sequencing technology to evaluate the bacterial communities of 28-day-old marine biofilms formed on glass, polydimethylsiloxane (PDMS), and PDMS filled with AgNPs and subsequently tested the influence of these marine biofilms on plantigrade settlement by the mussel Mytilus coruscus. AgNP-filled PDMS significantly reduced the dry weight and bacterial density of biofilms compared with the glass and PDMS controls. AgNP incorporation impacted bacterial communities by reducing the relative abundance of Flavobacteriaceae (phylum: Bacteroidetes) and increasing the relative abundance of Vibrionaceae (phylum: Proteobacteria) in 28-day-old biofilms compared to PDMS. The settlement rate of M. coruscus on 28-day-old biofilms developed on AgNPs was lower by >30% compared to settlement on control biofilms. Thus, the incorporation of AgNPs influences biofilm bacterial communities in the marine environment and subsequently inhibits mussel settlement.


Asunto(s)
Biopelículas/efectos de los fármacos , Nanopartículas del Metal/química , Mytilus/efectos de los fármacos , Plata/farmacología , Animales , Bioensayo , Biomasa , Diatomeas/efectos de los fármacos , Dimetilpolisiloxanos/farmacología , Filogenia , Análisis de Componente Principal
18.
Biofouling ; 32(7): 763-77, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27348759

RESUMEN

This study investigated the effect of carbon nanotubes (CNTs) and titanium dioxide (TiO2) incorporated in PDMS on biofilm formation and plantigrade settlement of Mytilus coruscus. TiO2 increased bacterial density, and CNTs also increased bacterial density but reduced diatom density in biofilms after 28 days. Further analysis was conducted between bacterial communities on glass, PDMS, CNTs (0.5 wt%) and TiO2 (7.5 wt%). ANOSIM analysis revealed significant differences (R > 0.9) between seven, 14, 21 and 28 day-old bacterial communities. MiSeq sequencing showed that CNTs and TiO2 impacted the composition of 28 day-old bacterial communities by increasing the abundance of Proteobacteria and decreasing the abundance of Bacteroidetes. The maximum decreased settlement rate in 28 day-old biofilms on CNTs and TiO2 was > 50% in comparison to those on glass and PDMS. Thus, CNTs and TiO2 incorporated in PDMS altered the biomass and community composition of biofilms, and subsequently decreased mussel settlement.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Diatomeas/fisiología , Dimetilpolisiloxanos/química , Mytilus/fisiología , Nanotubos de Carbono/química , Proteobacteria/fisiología , Titanio/química , Animales , Propiedades de Superficie
19.
Mar Pollut Bull ; 103(1-2): 144-150, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26763325

RESUMEN

The purpose of this study is to develop feasible tools to investigate the cumulative impact of reclamations on coastal ecosystem health, so that the strategies of ecosystem-based management can be applied in the coastal zone. An indicator system and model were proposed to assess the cumulative impact synthetically. Two coastal water bodies, namely Laizhou Bay (LZB) and Tianjin coastal waters (TCW), in the Bohai Sea of China were studied and compared, each in a different phase of reclamations. Case studies showed that the indicator scores of coastal ecosystem health in LZB and TCW were 0.75 and 0.68 out of 1.0, respectively. It can be concluded that coastal reclamations have a historically cumulative effect on benthic environment, whose degree is larger than that on aquatic environment. The ecosystem-based management of coastal reclamations should emphasize the spatially and industrially intensive layout.


Asunto(s)
Conservación de los Recursos Naturales , Monitoreo del Ambiente , Bahías , China , Ecosistema , Ambiente , Océanos y Mares , Calidad del Agua
20.
Proteome Sci ; 13: 19, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26225125

RESUMEN

BACKGROUND: Vibrio parahaemolyticus is a common pathogen infecting humans and marine animals; this pathogen has become a major concern of marine food products and trade. In this study, V. parahaemolyticus isolated from sewage was exposed to different culture conditions and analyzed by isobaric tag for relative and absolute quantitation (iTRAQ) based reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique. Our goal is to gain further insights into the proteomics of V. parahaemolyticus, particularly differentially expressed proteins closely correlated with growth conditions and pathogenicity associated proteins. RESULTS: In this study, a total of 2,717 proteins including numerous membrane proteins were significantly identified, and 616 proteins displayed significant differential expression under different conditions. Of them, 12 proteins mainly participating in metabolism showed the most elastic expression differentiation between different culture conditions. Some membrane proteins such as type I secretion outer membrane protein, TolC, lipoprotein, efflux system proteins iron-regulated protein A and putaive Fe-regulated protein B, ferric siderophore receptor homolog and several V. parahaemolyticus virulence-associated proteins were differentially regulated under different conditions. Some differentially regulated proteins were analyzed and confirmed at gene expression level by quantitative real time polymerase chain reaction (qRT-PCR). CONCLUSIONS: Proteomics analysis results revealed the characteristics of V. parahaemolyticus proteome expression, provided some promising biomarkers related with growth conditions, the results likely advance insights into the mechanism involved in the response of V. parahaemolyticus to different conditions. Some virulence-associated proteins were discovered to be differentially expressed under different conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...