Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 194: 105503, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532323

RESUMEN

Glyphodes pyloalis Walker (G. pyloalis) is a common destructive mulberry pest. Due to the long-term and frequent use of insecticides, it has developed tolerance to commonly used insecticides. Tolfenpyrad (TFP) is a novel pyrazole heterocyclic insecticide. In order to understand the TFP detoxification mechanism of G. pyloalis larvae, we first estimated the LC30 dose of TFP for 3rd instar G. pyloalis larvae. Next, we identified genes that were differentially expressed in 3rd instar G. pyloalis larvae treated with TFP compared to the control group by transcriptome sequencing. In total, 86,949,569 and 67,442,028 clean reads were obtained from TFP-treated and control G. pyloalis larvae, respectively. A total of 5588 differentially expressed genes (DEGs) were identified in TFP-treated and control G. pyloalis larvae, of which 3084 genes were upregulated and 2504 genes were downregulated. We analyzed the expression of 43 candidate detoxification enzyme genes associated with insecticide tolerance using qPCR. According to the spatiotemporal expression pattern of DEGs, we found that CYP6ABE1, CYP333A36 and GST-epsilon8 were highly expressed in the midgut, while CarEs14 was strongly expressed in haemolymph. Furthermore, we successfully knocked down these genes by RNA interference. After silencing CYP6ABE1 and CYP333A36, bioassay showed that the mortality rate of TFP-treated G. pyloalis larvae was significantly higher compared to the control group. This study provides a theoretical foundation for understanding the sensitivity of G. pyloalis to TFP and establish the basis for the effective and green management of this pest.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Animales , Insecticidas/farmacología , Insecticidas/metabolismo , Mariposas Nocturnas/metabolismo , Larva/genética , Pirazoles/metabolismo
2.
Pest Manag Sci ; 78(6): 2629-2642, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35362207

RESUMEN

BACKGROUND: α-linolenic acid is an essential unsaturated fatty acid in organisms. However, there is a large gap between α-linolenic acid accumulation and its synthesis mechanism in insects. Fatty acid synthases (FASs) and desaturases (Desats) are vital enzymes required for the synthesis of unsaturated fatty acids. RESULTS: The pupae of Glyphodes pyloalis (Lepidoptera: Pyralidae), which is a destructive pest of mulberry trees, contain the highest level of α-linolenic acid compared to other life-history stages. To further explore the synthesis mechanism of α-linolenic acid in G. pyloalis pupae, we constructed a pupal transcriptome dataset and identified 106 genes related to fatty acid metabolism from it. Among these, two fatty acid synthases (GpylFAS) and five desaturases (GpylDesat) were identified. A qRT-PCR validation revealed that GpylFAS1 and GpylDesat1, 2, 3, 5 were expressed highest at pupal stages. Furthermore, the content of α-linolenic acid decreased significantly after silencing GpylFAS1 and GpylDesat5, respectively. Besides, knocking down GpylFAS1 or GpylDesat5 resulted in more malformed pupae and adults, as well as lower emergence rates. Meanwhile, silencing GpylFAS1 or GpylDesat5 affected the expressions of the other GpylFASs and GpylDesats. CONCLUSION: The present results illustrate the pivotal function of FASs and Desats in α-linolenic acid biosynthesis and metamorphosis in insects. Our research also broadens the sources of unsaturated fatty acids, especially for α-linolenic acid from insects, and provides novel insights for the management of mulberry insect pests from the perspective of utilization rather than control. © 2022 Society of Chemical Industry.


Asunto(s)
Morus , Mariposas Nocturnas , Animales , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácido Graso Sintasas/metabolismo , Mariposas Nocturnas/genética , Pupa/genética , Ácido alfa-Linolénico/metabolismo
3.
Pestic Biochem Physiol ; 181: 105004, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35082028

RESUMEN

Glyphodes pyloalis Walker is a destructive pest on mulberry trees and poses a significant threat to the sericultural industry in China. Phoxim and chlorfenapyr are two commonly used insecticides in mulberry fields. Glutathione-S-transferases (GSTs) comprise a multifunctional protein superfamily that plays important roles in the detoxification of insecticides and xenobiotic compounds in insects. However, whether GSTs participate in the tolerance of phoxim and chlorfenapyr in G. pyloalis is still unknown. To better understand the mechanism of insecticide tolerance in G. pyloalis, the enzymatic activity of GSTs was evaluated under phoxim and chlorfenapyr exposure, respectively. GST enzyme activity was significantly increased after 12, 36 and 48 h of phoxim treatment and 12, 24, 36 and 48 h of chlorfenapyr treatment. Subsequently, eighteen GST genes were identified from the larvae transcriptome of G. pyloalis. Among these, ten GpGSTs had GSH-binding sites and fifteen GpGSTs had variable hydrophobic substrate-binding sites. The expression levels of Delta-GpGST and Epsilon-GpGST genes were significantly influenced by phoxim and chlorfenapyr treatment, and by the time post insecticide application. Furthermore, after silencing GpGST-E4, the mortality rate of G. pyloalis larvae was increased when they were exposed to chlorfenapyr, but it did not significantly alter when the larvae were exposed to phoxim. Our results indicated the vital roles of GpGSTs in the tolerance of insecticides and this action depends on the categories of insecticides. The present study provides a theoretical basis for elucidating insecticide susceptibility and promotes functional research on GST genes in G. pyloalis.


Asunto(s)
Insecticidas , Morus , Mariposas Nocturnas , Animales , Glutatión , Insecticidas/toxicidad , Compuestos Organotiofosforados , Piretrinas , Transferasas
4.
Front Physiol ; 12: 753914, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34751218

RESUMEN

Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is a destructive mulberry pest, causing great damage to mulberry in China. Heat shock proteins (Hsps) are involved in various signal pathways and regulate lots of physiological processes in insects. The function of Hsps in G. pyloalis, however, has still received less attention. Here, we identified five Hsp genes from G. pyloalis transcriptome dataset including two Hsp70 family genes (GpHsp71.3 and GpHsp74.9) and three Hsp90 family genes (GpHsp82.4, GpHsp89, and GpHsp93.4). Quantitative Real-time PCR validation revealed that all Hsps of G. pyloalis have significant expression in pupal and diapause stage, at which the larvae arrest the development. Expressions of GpHsp71.3 and GpHsp82.4 were increased significantly after thermal treatment at 40°C, and this upregulation depended on heat treatment duration. Furthermore, silencing GpHsp82.4 by RNA interference led to a significant increase in mortality of G. pyloalis larvae under the heat stress compared to the control group. After starvation stress, the expression levels of GpHsp82.4 and GpHsp93.4 were significantly increased. At last, after being parasitized by the parasitoid wasp Aulacocentrum confusum, Hsp70 and Hsp90 genes of G. pyloalis were decreased significantly in the early stage of parasitization and this moderation was affected by time post-parasitization. This study highlights the function of G. pyloalis Hsps in response to environmental stress and provides a perspective for the control of this pest.

5.
Arch Insect Biochem Physiol ; 108(3): e21842, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34499777

RESUMEN

Glyphodes pyloalis Walker has become one of the most significant mulberry pests, and it has caused serious economic losses in major mulberry growing regions in China. Peptidoglycan recognition proteins (PGRPs) are responsible for initiating and regulating immune signalling pathways in insects. However, their roles responding to chemical pesticides is still less known. This study aimed to investigate the possible detoxication function of GpPGRP-S2 and GpPGRP-S3 in G. pyloalis in response to chlorfenapyr and phoxim. The chlorfenapyr and phoxim treatment significantly induced the expression level of GpPGRP-S3 at 48 h. In addition, the expression levels of GpPGRP-S2 and GpPGRP-S3 in the chlorfenapyr/phoxim treatment group were significantly higher in midgut than those in the control group at 48 h. The results of the survival experiment showed that silencing either GpPGRP-S2 or GpPGRP-S3 would not influence the survival rate of G. pyloalis which treated with phoxim, however, silencing GpPGRP-S2 or GpPGRP-S3 would cause G. pyloalis to be more easily killed by chlorfenapyr. The expression of carboxylesterase GpCXE1 was significantly induced by chlorfenapyr/phoxim treatment, while it was suppressed once silenced GpPGRP-S2 followed with chlorfenapyr treatment or silenced GpPGRP-S3 followed with phoxim treatment. These results might suggest that under the chlorfenapyr/phoxim treatment condition, the connection between GpPGRPs and detoxification genes in insect was induced to maintain physiological homeostasis; and these results may further enrich the mechanisms of insects challenged by insecticides.


Asunto(s)
Proteínas Portadoras , Insecticidas , Mariposas Nocturnas , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Insecticidas/metabolismo , Insecticidas/farmacología , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Compuestos Organotiofosforados/metabolismo , Compuestos Organotiofosforados/farmacología , Control de Plagas/métodos , Piretrinas/metabolismo , Piretrinas/farmacología
6.
Insects ; 12(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924270

RESUMEN

Glyphodes pyloalis Walker (G. pyloalis) is a serious pest on mulberry. Due to the increasing pesticide resistance, the development of new and effective environmental methods to control G. pyloalis is needed. Trehalase is an essential enzyme in trehalose hydrolysis and energy supply, and it has been considered a promising target for insect pest control. However, the specific function of trehalase in G. pyloalis has not been reported. In this study, two trehalase genes (GpTre1 and GpTre2) were identified from our previous transcriptome database. The functions of the trehalase in chitin metabolism were studied by injecting larvae with dsRNAs and trehalase inhibitor, Validamycin A. The open reading frames (ORFs) of GpTre1 and GpTre2 were 1,704 bp and 1,869 bp, which encoded 567 and 622 amino acid residues, respectively. Both of GpTre1 and GpTre2 were mainly expressed in the head and midgut. The highest expression levels of them were in 5th instar during different development stages. Moreover, knockdown both of GpTre1 and GpTre2 by the dsRNAs led to significantly decreased expression of chitin metabolism pathway-related genes, including GpCHSA, GpCDA1, GpCDA2, GpCHT3a, GpCHT7, GpCHSB, GpCHT-h, GpCHT3b, GpPAGM, and GpUAP, and abnormal phenotypes. Furthermore, the trehalase inhibitor, Validamycin A, treatment increased the expressions of GpTre1 and GpTre2, increased content of trehalose, and decreased the levels of glycogen and glucose. Additionally, the inhibitor caused a significantly increased cumulative mortality of G. pyloalis larvae on the 2nd (16%) to 6th (41.3%) day, and decreased the rate of cumulative pupation (72.3%) compared with the control group (95.6%). After the activities of trehalase were suppressed, the expressions of 6 integument chitin metabolism-related genes decreased significantly at 24 h and increased at 48 h. The expressions of GpCHSB and GpCHT-h, involved in chitin metabolism pathway of peritrophic membrane in the midgut, increased at 24 h and 48 h, and there were no changes to GpCHT3b and GpPAGM. These results reveal that GpTre1 and GpTre2 play an essential role in the growth of G. pyloalis by affecting chitin metabolism, and this provides useful information for insect pest control in the future.

7.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32629944

RESUMEN

Glyphodes pyloalis Walker (G. pyloalis) causes significant damage to mulberry every year, and we currently lack effective and environmentally friendly ways to control the pest. Chitin synthase (CHS) is a critical regulatory enzyme related to chitin biosynthesis, which plays a vital role in the growth and development of insects. The function of CHS in G. pyloalis, however, has not been studied. In this study, two chitin synthase genes (GpCHSA and GpCHSB) were screened from our previously created transcriptome database. The complete coding sequences of the two genes are 5,955 bp and 5,896 bp, respectively. Expression of GpCHSA and GpCHSB could be detected throughout all developmental stages. Relatively high expression levels of GpCHSA occurred in the head and integument and GpCHSB was most highly expressed in the midgut. Moreover, silencing of GpCHSA and GpCHSB using dsRNA reduced expression of downstream chitin metabolism pathway genes and resulted in abnormal development and wings stretching, but did not affect normal pupating of larvae. Furthermore, the inhibitor of chitin synthesis diflubenzuron (DFB) was used to further validate the RNAi result. DFB treatment significantly improved expression of GpCHSA, except GpCHSB, and their downstream genes, and also effected G. Pyloali molting at 48 h (62% mortality rate) and 72 h (90% mortality rate), respectively. These results show that GpCHSA and GpCHSB play critical roles in the development and wing stretching in G. pyloalis adults, indicating that the genes are attractive potential pest control targets.


Asunto(s)
Quitina Sintasa/genética , Mariposas Nocturnas/genética , Animales , Quitina Sintasa/metabolismo , Diflubenzurón , Control de Insectos , Mariposas Nocturnas/enzimología , Mariposas Nocturnas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...