Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(4): 3500-3515, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38206084

RESUMEN

Polymorphic transformation of molecular crystals is a fundamental phase transition process, and it is important practically in the chemical, material, biopharmaceutical, and energy storage industries. However, understanding of the transformation mechanism at the molecular level is poor due to the extreme simulating challenges in enhanced sampling and formulating order parameters (OPs) as the collective variables that can distinguish polymorphs with quite similar and complicated structures so as to describe the reaction coordinate. In this work, two kinds of OPs for CL-20 were constructed by the bond distances, bond orientations and relative orientations. A K-means clustering algorithm based on the Euclidean distance and sample weight was used to smooth the initial finite temperature string (FTS), and the minimum free energy path connecting ß-CL-20 and ε-CL-20 was sketched by the string method in collective variables, and the free energy profile along the path and the nucleation kinetics were obtained by Markovian milestoning with Voronoi tessellations. In comparison with the average-based sampling, the K-means clustering algorithm provided an improved convergence rate of FTS. The simulation of transformation was independent of OP types but was affected greatly by finite-size effects. A surface-mediated local nucleation mechanism was confirmed and the configuration located at the shoulder of potential of mean force, rather than overall maximum, was confirmed to be the critical nucleus formed by the cooperative effect of the intermolecular interactions. This work provides an effective way to explore the polymorphic transformation of caged molecular crystals at the molecular level.

2.
RSC Adv ; 8(62): 35759-35767, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35547895

RESUMEN

A novel cationic tripyridiniumylporphyrin monomer, 5-[4-[2-(acryloyloxy)ethoxy]phenyl]-l0,l5,20-tris(N-methyl-4-pyridiniumyl)porphyrinate zinc(ii) (ZnTrMPyP), was synthesized, and its self-aggregation in water was studied by UV-vis absorption. The monomer was copolymerized with acrylamide in water and DMSO, respectively, to prepare the water-soluble polymers P-W and P-D. The aggregation behaviour of the copolymers in aqueous solution was investigated by UV-vis absorption and fluorescence emission spectra. The polymer P-D displayed very similar absorption and emission spectra to those of ZnTrMPyP in water, indicating that the polymer chains in P-D have no significant effect on the aggregate structure of ZnTrMPyP in aqueous media. In comparison, two new absorption bands appeared in the Q band range of polymer P-W and its fluorescence spectra red shifted and the fluorescence quantum yield decreased obviously. These characteristics remained unchanged even in a good solvent for the monomer, suggesting that a new aggregation structure for the porphyrin pendants fixed by the covalent bond was formed. According to the different dispersed states of the porphyrin monomer in water and DMSO, the porphyrin pendants should distribute randomly in the P-D polymer chains while having micro-blocky sequences in polymer P-W. The association behaviour between the copolymers and tetra(p-sulfonatophenyl)porphyrin, TSPP, bearing opposite charged substituents were studied by absorption and emission Spectra and further analyzed by the Benesi-Hildebrand and the Stern-Volmer methods. The results showed that relatively discrete porphyrin pendants in P-D formed a 1 : 1 stoichiometric complex with TSPP and both static and dynamic mechanisms were active in this quenching process, while the tightly associated porphyrin pendants in P-W interacted with TSPP as an entirety and static quenching was dominant in this process. This observation was in accordance with their sequential structure. The polymer P-W has a wider absorption range and higher absorption intensity in the long wavelength region than the porphyrin monomer, which can more efficiently absorb light to accomplish light harvesting in water.

3.
Chem Sci ; 6(8): 4723-4729, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28717484

RESUMEN

TiN n+ clusters were generated by laser ablation and analyzed experimentally by mass spectrometry. The results showed that the mass peak of the TiN12+ cluster is dominant in the spectrum. The TiN12+ cluster was further investigated by photodissociation experiments with 266, 532 and 1064 nm photons. Density functional calculations were conducted to investigate stable structures of TiN12+ and the corresponding neutral cluster, TiN12. The theoretical calculations found that the most stable structure of TiN12+ is Ti(N2)6+ with Oh symmetry. The calculated binding energy is in good agreement with that obtained from the photodissociation experiments. The most stable structure of neutral TiN12 is Ti(N2)6 with D3d symmetry. The Ti-N bond strengths are greater than 0.94 eV in both Ti(N2)6+ and its neutral counterpart. The interaction between Ti and N2 weakens the N-N bond significantly. For neutral TiN12, the Ti(N3)4 azide, the N5TiN7 sandwich structure and the N6TiN6 structure are much higher in energy than the Ti(N2)6 complex. The DFT calculations predicted that the decomposition of Ti(N3)4, N5TiN7, and N6TiN6 into a Ti atom and six N2 molecules can release energies of about 139, 857, and 978 kJ mol-1 respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...