Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 36(9): 2130-2145.e7, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39084216

RESUMEN

Adipose tissue can recruit catabolic adipocytes that utilize chemical energy to dissipate heat. This process occurs either by uncoupled respiration through uncoupling protein 1 (UCP1) or by utilizing ATP-dependent futile cycles (FCs). However, it remains unclear how these pathways coexist since both processes rely on the mitochondrial membrane potential. Utilizing single-nucleus RNA sequencing to deconvolute the heterogeneity of subcutaneous adipose tissue in mice and humans, we identify at least 2 distinct subpopulations of beige adipocytes: FC-adipocytes and UCP1-beige adipocytes. Importantly, we demonstrate that the FC-adipocyte subpopulation is highly metabolically active and utilizes FCs to dissipate energy, thus contributing to thermogenesis independent of Ucp1. Furthermore, FC-adipocytes are important drivers of systemic energy homeostasis and linked to glucose metabolism and obesity resistance in humans. Taken together, our findings identify a noncanonical thermogenic adipocyte subpopulation, which could be an important regulator of energy homeostasis in mammals.


Asunto(s)
Adipocitos , Animales , Femenino , Humanos , Masculino , Ratones , Adipocitos/metabolismo , Adipocitos/citología , Adipocitos Beige/metabolismo , Adipocitos Beige/citología , Metabolismo Energético , Ratones Endogámicos C57BL , Termogénesis/genética , Transcriptoma , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética
2.
ACS Nano ; 18(27): 17969-17986, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38920100

RESUMEN

Obesity is becoming a worldwide pandemic. Interfacial engineering of food lipid is expected to inhibit diet-induced obesity without damage to the eating enjoyment brought by high-fat diets. Unfortunately, this strategy has not been achieved yet. After screening different plant proteins, bromelain and papain were found to form wormlike and long-straight protein fibrils, respectively. The conversion of long-straight amyloid-like fibrils to wormlike fibrils was demonstrated in the fibrillation of bromelain. Using oil-in-water high internal phase emulsions (HIPEs) as a proof of concept, bromelain fibrils showed dramatically stronger interfacial stabilization capabilities than papain fibrils with high application potentials in the real-world formulation of high-fat food products such as mayonnaise. Compared with papain fibrils, oral administration of HIPEs stabilized by bromelain fibrils resulted in substantially higher fecal lipid contents and significantly decreased expression levels of the genes related to lipid absorption and transport in the intestine, including CD36, FATP-2, FATP-4, and APOA-4, without a difference in intervening gut microbiota. Consequently, dramatically less lipid absorption in the small intestine, markedly smaller chylomicron particles in the plasma, lower serum triglycerides, and controlled energy and lipid metabolism, as well as the inhibition of adipose expansion and overweight, were observed in the group with gavage of HIPEs stabilized by the bromelain fibrils rather than the papain fibrils. Furthermore, with the same calorie, substitution of all the fat in the standard high-fat feed of mice with the HIPEs emulsified by the bromelain fibrils showed a significantly stronger effect than the ones prepared by the papain fibrils on preventing high-fat-diet (HFD)-induced obesity including alleviation of adipose expansion and inflammation as well as fatty liver, also via inhibiting the absorption and transport of lipid in the intestine. The effect is ascribed to the suppressed lipolysis caused by a more compact and elastic interfacial layer formed by the wormlike fibrils than that of the long-straight fibrils, which are resistant to gastric environments and replacement by bile acids in digestion. Therefore, we provide an appealing and general strategy for controlling obesity by reducing the supply of free fatty acids (FAs) for absorption in the enteric lumen through protein fibril polymorphisms at the interface.


Asunto(s)
Obesidad , Papaína , Animales , Obesidad/metabolismo , Ratones , Papaína/metabolismo , Papaína/química , Bromelaínas/farmacología , Bromelaínas/química , Bromelaínas/metabolismo , Ratones Endogámicos C57BL , Masculino , Dieta Alta en Grasa , Emulsiones/química , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos
3.
Nat Cell Biol ; 26(4): 552-566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561547

RESUMEN

Metabolic crosstalk of the major nutrients glucose, amino acids and fatty acids (FAs) ensures systemic metabolic homeostasis. The coordination between the supply of glucose and FAs to meet various physiological demands is especially important as improper nutrient levels lead to metabolic disorders, such as diabetes and metabolic dysfunction-associated steatohepatitis (MASH). In response to the oscillations in blood glucose levels, lipolysis is thought to be mainly regulated hormonally to control FA liberation from lipid droplets by insulin, catecholamine and glucagon. However, whether general cell-intrinsic mechanisms exist to directly modulate lipolysis via glucose sensing remains largely unknown. Here we report the identification of such an intrinsic mechanism, which involves Golgi PtdIns4P-mediated regulation of adipose triglyceride lipase (ATGL)-driven lipolysis via intracellular glucose sensing. Mechanistically, depletion of intracellular glucose results in lower Golgi PtdIns4P levels, and thus reduced assembly of the E3 ligase complex CUL7FBXW8 in the Golgi apparatus. Decreased levels of the E3 ligase complex lead to reduced polyubiquitylation of ATGL in the Golgi and enhancement of ATGL-driven lipolysis. This cell-intrinsic mechanism regulates both the pool of intracellular FAs and their extracellular release to meet physiological demands during fasting and glucose deprivation. Moreover, genetic and pharmacological manipulation of the Golgi PtdIns4P-CUL7FBXW8-ATGL axis in mouse models of simple hepatic steatosis and MASH, as well as during ex vivo perfusion of a human steatotic liver graft leads to the amelioration of steatosis, suggesting that this pathway might be a promising target for metabolic dysfunction-associated steatotic liver disease and possibly MASH.


Asunto(s)
Glucemia , Lipólisis , Fosfatos de Fosfatidilinositol , Animales , Humanos , Ratones , Ácidos Grasos/metabolismo , Glucosa , Lipasa/genética , Lipasa/metabolismo , Lipólisis/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Nat Commun ; 14(1): 4162, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443109

RESUMEN

The current obesity epidemic and high prevalence of metabolic diseases necessitate efficacious and safe treatments. Brown adipose tissue in this context is a promising target with the potential to increase energy expenditure, however no pharmacological treatments activating brown adipose tissue are currently available. Here, we identify AXL receptor tyrosine kinase as a regulator of adipose function. Pharmacological and genetic inhibition of AXL enhance thermogenic capacity of brown and white adipocytes, in vitro and in vivo. Mechanistically, these effects are mediated through inhibition of PI3K/AKT/PDE signaling pathway, resulting in induction of nuclear FOXO1 localization and increased intracellular cAMP levels via PDE3/4 inhibition and subsequent stimulation of the PKA-ATF2 pathway. In line with this, both constitutive Axl deletion as well as inducible adipocyte-specific Axl deletion protect animals from diet-induced obesity concomitant with increases in energy expenditure. Based on these data, we propose AXL receptor as a target for the treatment of obesity.


Asunto(s)
Tejido Adiposo Pardo , Tirosina Quinasa del Receptor Axl , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Obesidad/metabolismo , Adipocitos Blancos/metabolismo , Metabolismo Energético , Tejido Adiposo Blanco/metabolismo , Termogénesis/genética , Adipocitos Marrones/metabolismo , Ratones Endogámicos C57BL , Tejido Adiposo/metabolismo
5.
Nat Metab ; 4(1): 90-105, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35027768

RESUMEN

Healthy adipose tissue remodeling depends on the balance between de novo adipogenesis from adipogenic progenitor cells and the hypertrophy of adipocytes. De novo adipogenesis has been shown to promote healthy adipose tissue expansion, which confers protection from obesity-associated insulin resistance. Here, we define the role and trajectory of different adipogenic precursor subpopulations and further delineate the mechanism and cellular trajectory of adipogenesis, using single-cell RNA-sequencing datasets of murine adipogenic precursors. We identify Rspo2 as a functional regulator of adipogenesis, which is secreted by a subset of CD142+ cells to inhibit maturation of early progenitors through the receptor Lgr4. Increased circulating RSPO2 in mice leads to adipose tissue hypertrophy and insulin resistance and increased RSPO2 levels in male obese individuals correlate with impaired glucose homeostasis. Taken together, these findings identify a complex cellular crosstalk that inhibits adipogenesis and impairs adipose tissue homeostasis.


Asunto(s)
Adipogénesis , Tejido Adiposo/metabolismo , Redes y Vías Metabólicas , Trombospondinas/genética , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Tejido Adiposo/citología , Animales , Biología Computacional , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Heterogeneidad Genética , Humanos , Inmunofenotipificación , Resistencia a la Insulina , Ratones , Obesidad/etiología , Obesidad/metabolismo , RNA-Seq , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes , Células Madre/citología , Células Madre/metabolismo , Trombospondinas/metabolismo
6.
Nat Commun ; 12(1): 7144, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880217

RESUMEN

Activation of thermogenic brown and beige adipocytes is considered as a strategy to improve metabolic control. Here, we identify GPR180 as a receptor regulating brown and beige adipocyte function and whole-body glucose homeostasis, whose expression in humans is associated with improved metabolic control. We demonstrate that GPR180 is not a GPCR but a component of the TGFß signalling pathway and regulates the activity of the TGFß receptor complex through SMAD3 phosphorylation. In addition, using genetic and pharmacological tools, we provide evidence that GPR180 is required to manifest Collagen triple helix repeat containing 1 (CTHRC1) action to regulate brown and beige adipocyte activity and glucose homeostasis. In this work, we show that CTHRC1/GPR180 signalling integrates into the TGFß signalling as an alternative axis to fine-tune and achieve low-grade activation of the pathway to prevent pathophysiological response while contributing to control of glucose and energy metabolism.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Termogénesis/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Adipocitos Beige/metabolismo , Adipocitos Marrones/metabolismo , Animales , Metabolismo Energético , Proteínas de la Matriz Extracelular/genética , Glucosa , Homeostasis , Humanos , Masculino , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética , Termogénesis/genética
7.
Nat Metab ; 3(12): 1648-1661, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34903883

RESUMEN

To liberate fatty acids (FAs) from intracellular stores, lipolysis is regulated by the activity of the lipases adipose triglyceride lipase (ATGL), hormone-sensitive lipase and monoacylglycerol lipase. Excessive FA release as a result of uncontrolled lipolysis results in lipotoxicity, which can in turn promote the progression of metabolic disorders. However, whether cells can directly sense FAs to maintain cellular lipid homeostasis is unknown. Here we report a sensing mechanism for cellular FAs based on peroxisomal degradation of FAs and coupled with reactive oxygen species (ROS) production, which in turn regulates FA release by modulating lipolysis. Changes in ROS levels are sensed by PEX2, which modulates ATGL levels through post-translational ubiquitination. We demonstrate the importance of this pathway for non-alcoholic fatty liver disease progression using genetic and pharmacological approaches to alter ROS levels in vivo, which can be utilized to increase hepatic ATGL levels and ameliorate hepatic steatosis. The discovery of this peroxisomal ß-oxidation-mediated feedback mechanism, which is conserved in multiple organs, couples the functions of peroxisomes and lipid droplets and might serve as a new way to manipulate lipolysis to treat metabolic disorders.


Asunto(s)
Ácidos Grasos/metabolismo , Lipólisis , Oxidación-Reducción , Peroxisomas/metabolismo , Aciltransferasas/metabolismo , Disulfuros , Hígado Graso/etiología , Hígado Graso/metabolismo , Hígado Graso/patología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Modelos Biológicos , Peroxinas/genética , Peroxinas/metabolismo , Unión Proteica , Estabilidad Proteica , Especies Reactivas de Oxígeno/metabolismo , Ubiquitinación
8.
Cell Rep ; 35(4): 109023, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33909996

RESUMEN

To analyze the capacity of white and brown adipose tissue remodeling, we developed two mouse lines to label, quantitatively trace, and ablate white, brown, and brite/beige adipocytes at different ambient temperatures. We show here that the brown adipocytes are recruited first and reach a peak after 1 week of cold stimulation followed by a decline during prolonged cold exposure. On the contrary, brite/beige cell numbers plateau after 3 weeks of cold exposure. At thermoneutrality, brown adipose tissue, in spite of being masked by a white-like morphology, retains its brown-like physiology, as Ucp1+ cells can be recovered immediately upon beta3-adrenergic stimulation. We further demonstrate that the recruitment of Ucp1+ cells in response to cold is driven by existing adipocytes. In contrast, the regeneration of the interscapular brown adipose tissue following ablation of Ucp1+ cells is driven by de novo differentiation.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Termogénesis/genética , Animales , Diferenciación Celular , Humanos , Ratones
9.
Nature ; 587(7832): 98-102, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116305

RESUMEN

Adipose tissue is usually classified on the basis of its function as white, brown or beige (brite)1. It is an important regulator of systemic metabolism, as shown by the fact that dysfunctional adipose tissue in obesity leads to a variety of secondary metabolic complications2,3. In addition, adipose tissue functions as a signalling hub that regulates systemic metabolism through paracrine and endocrine signals4. Here we use single-nucleus RNA-sequencing (snRNA-seq) analysis in mice and humans to characterize adipocyte heterogeneity. We identify a rare subpopulation of adipocytes in mice that increases in abundance at higher temperatures, and we show that this subpopulation regulates the activity of neighbouring adipocytes through acetate-mediated modulation of their thermogenic capacity. Human adipose tissue contains higher numbers of cells of this subpopulation, which could explain the lower thermogenic activity of human compared to mouse adipose tissue and suggests that targeting this pathway could be used to restore thermogenic activity.


Asunto(s)
Adipocitos/metabolismo , Núcleo Celular/genética , RNA-Seq , Análisis de la Célula Individual , Termogénesis/genética , Acetatos/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Adulto , Anciano , Familia de Aldehído Deshidrogenasa 1/genética , Familia de Aldehído Deshidrogenasa 1/metabolismo , Animales , Separación Celular , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Metabolismo Energético , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Comunicación Paracrina , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Adulto Joven
10.
Sci Rep ; 7(1): 5650, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28720827

RESUMEN

Neuronal necrosis occurs during early phase of ischemic insult. However, our knowledge of neuronal necrosis is still inadequate. To study the mechanism of neuronal necrosis, we previously established a Drosophila genetic model of neuronal necrosis by calcium overloading through expression of a constitutively opened cation channel mutant. Here, we performed further genetic screens and identified a suppressor of neuronal necrosis, CG17259, which encodes a seryl-tRNA synthetase. We found that loss-of-function (LOF) CG17259 activated eIF2α phosphorylation and subsequent up-regulation of chaperons (Hsp26 and Hsp27) and autophagy. Genetically, down-regulation of eIF2α phosphorylation, Hsp26/Hsp27 or autophagy reduced the protective effect of LOF CG17259, indicating they function downstream of CG17259. The protective effect of these protein degradation pathways indicated activation of a toxic protein during neuronal necrosis. Our data indicated that p53 was likely one such protein, because p53 was accumulated in the necrotic neurons and down-regulation of p53 rescued necrosis. In the SH-SY5Y human cells, tunicamycin (TM), a PERK activator, promoted transcription of hsp27; and necrosis induced by glutamate could be rescued by TM, associated with reduced p53 accumulation. In an ischemic stroke model in rats, p53 protein was also increased, and TM treatment could reduce the p53 accumulation and brain damage.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Proteínas de Choque Térmico/genética , Neuronas/citología , Serina-ARNt Ligasa/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Autofagia , Muerte Celular , Línea Celular , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Humanos , Modelos Animales , Neuronas/metabolismo , Neuroprotección , Fosforilación , Ratas , Receptores AMPA/genética , Tunicamicina/farmacología
11.
PLoS Genet ; 12(10): e1006359, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27716788

RESUMEN

As fundamental processes in mitochondrial dynamics, mitochondrial fusion, fission and transport are regulated by several core components, including Miro. As an atypical Rho-like small GTPase with high molecular mass, the exchange of GDP/GTP in Miro may require assistance from a guanine nucleotide exchange factor (GEF). However, the GEF for Miro has not been identified. While studying mitochondrial morphology in Drosophila, we incidentally observed that the loss of vimar, a gene encoding an atypical GEF, enhanced mitochondrial fission under normal physiological conditions. Because Vimar could co-immunoprecipitate with Miro in vitro, we speculated that Vimar might be the GEF of Miro. In support of this hypothesis, a loss-of-function (LOF) vimar mutant rescued mitochondrial enlargement induced by a gain-of-function (GOF) Miro transgene; whereas a GOF vimar transgene enhanced Miro function. In addition, vimar lost its effect under the expression of a constitutively GTP-bound or GDP-bound Miro mutant background. These results indicate a genetic dependence of vimar on Miro. Moreover, we found that mitochondrial fission played a functional role in high-calcium induced necrosis, and a LOF vimar mutant rescued the mitochondrial fission defect and cell death. This result can also be explained by vimar's function through Miro, because Miro's effect on mitochondrial morphology is altered upon binding with calcium. In addition, a PINK1 mutant, which induced mitochondrial enlargement and had been considered as a Drosophila model of Parkinson's disease (PD), caused fly muscle defects, and the loss of vimar could rescue these defects. Furthermore, we found that the mammalian homolog of Vimar, RAP1GDS1, played a similar role in regulating mitochondrial morphology, suggesting a functional conservation of this GEF member. The Miro/Vimar complex may be a promising drug target for diseases in which mitochondrial fission and fusion are dysfunctional.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Proteínas de Drosophila/genética , Factores de Intercambio de Guanina Nucleótido/genética , Dinámicas Mitocondriales/genética , Enfermedad de Parkinson/genética , Proteínas de Unión al GTP rho/genética , Animales , Proteínas del Dominio Armadillo/metabolismo , Células COS , Calcio/metabolismo , Chlorocebus aethiops , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/patología , Necrosis/genética , Necrosis/patología , Enfermedad de Parkinson/patología , Interferencia de ARN , Proteínas de Unión al GTP rho/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(38): 13960-5, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25201987

RESUMEN

Neuronal necrosis induced by calcium overload causes devastating brain dysfunction in diseases such as stroke and brain trauma. It has been considered a stochastic event lacking genetic regulation, and pharmacological means to suppress neuronal necrosis are lacking. Using a Drosophila model of calcium overloading, we found JIL-1/mitogen- and stress-activated protein kinase 1/2 is a regulator of neuronal necrosis through phosphorylation of histone H3 serine 28 (H3S28ph). Further, we identified its downstream events including displacement of polycomb repressive complex 1 (PRC1) and activation of Trithorax (Trx). To test the role of JIL-1/PRC1/Trx cascade in mammals, we studied the necrosis induced by glutamate in rat cortical neuron cultures and rodent models of brain ischemia and found the cascade is activated in these conditions and inhibition of the cascade suppresses necrosis in vitro and in vivo. Together, our research demonstrates that neuronal necrosis is regulated by a chromatin-modifying cascade, and this discovery may provide potential therapeutic targets and biomarkers for neuronal necrosis.


Asunto(s)
Calcio/metabolismo , Cromatina/metabolismo , Neuronas/metabolismo , Animales , Biomarcadores/metabolismo , Cromatina/patología , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Histonas/genética , Histonas/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Necrosis , Neuronas/patología , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...