Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Angew Chem Int Ed Engl ; : e202414472, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292509

RESUMEN

Rapid, on-site measurement of ppm-level humidity in real time remains a challenge. In this work, we fabricated a few micrometer thick, ß-ketoenamine-linked covalent organic framework (COF) membrane via interfacially confined condensation of 1,3,5-tris-(4-aminophenyl)triazine (TTA) with 1,3,5-tri-formylphloroglucinol (TP). Based on the super-sensitive and reversible response of the COF membrane to water vapor, we developed a high-performance film-based fluorescence humidity sensor, depicting unprecedented detection limit of 0.005 ppm, fast response/recovery (2.2 s/2.0 s), and a detection range from 0.005 to 100 ppm. Remarkably, more than 7,000-time continuous tests showed no observable change in the performance of the sensor. The applicability of the sensor was verified by on-site and real-time monitoring of humidity in a glovebox. The superior performance of the sensor was ascribed to the highly porous structure and unique affinity of the COF membrane to water molecules as they enable fast mass transfer and efficient utilization of the water binding sites. Moreover, based on the remarkable moisture driven deformation of the COF membrane and its composition with the known polyimide films, some conceptual actuators were created. This study brings new ideas to the design of ultra-sensitive film-based fluorescent sensors (FFSs) and high-performance actuators.

2.
Anal Chem ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152896

RESUMEN

Abnormal concentration levels of trivalent metal ions (M3+) might hinder their natural biological activities in physiological processes and cause severe health hazards. Herein, a dual-chromophore probe (RhB-TPE) composed of rhodamine and tetraphenylethene (TPE) units was synthesized and explored for discriminating M3+ ions. It exhibited special aggregation and AIE properties in aqueous media. Its ensemble with anionic surfactant SDBS assemblies (RhB-TPE/SDBS) could be utilized as fluorescent sensors for selective and sensitive detection of M3+ ions such as Fe3+, Al3+, and Cr3+ by illustrating quenched TPE emission and switched-on rhodamine emission. Moreover, the use of SDBS assemblies at two concentrations could provide a single-probe-based sensor array and realize four-signal pattern recognition of different concentrations of the three M3+ ions and identify M3+ mixtures or unknown samples. The cross-reactive fluorescence variation was attributed to the M3+ influence on the FRET process from TPE to open-ring form rhodamine in the two ensemble sensors. With the coexistence of Al3+, the optimized RhB-TPE/SDBS ensemble sensor array was successfully applied to differentiate commercially available brand mineral water and purified water, as well as tap water. The present work provides a novel strategy to generate a single-probe-based sensor array and realizes fingerprint recognition of three trivalent metal ions and efficient discrimination of different types of water. The modulation FRET process of a dual chromophore in different surfactant ensembles inspires the future construction of novel and effective sensing platforms.

3.
J Phys Chem Lett ; 15(32): 8218-8223, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39101894

RESUMEN

The impacts of subsurface species of catalysts on reaction processes are still under debate, largely due to a lack of characterization methods for distinguishing these species from the surface species and the bulk. By using 17O solid-state nuclear magnetic resonance (NMR) spectroscopy, which can distinguish subsurface oxygen ions in CeO2 (111) nanorods, we explore the effects of subsurface species of oxides in CO oxidation reactions. The intensities of the 17O NMR signals due to surface and subsurface oxygen ions decrease after the introduction of CO into CeO2 nanorods, with a more significant decrease observed for the latter, confirming the participation of subsurface oxygen species. Density functional theory calculations show that the reaction involves subsurface oxygen ions filling the surface oxygen vacancies created by the direct contact of surface oxygen with CO. This new approach can be extended to the study of the role of oxygen species in other catalytic reactions.

4.
Chem Commun (Camb) ; 60(72): 9773-9776, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39158035

RESUMEN

A novel fluorescent nanofilm DBAP-ETTA has been developed for diethyl chlorophosphate (DCP) vapor detection with high sensitivity and selectivity. Its smooth, homogeneous structure and large Stokes shift enable significant fluorescence quenching upon DCP exposure. The protonation-based sensing mechanism makes it ideal for real-time, portable DCP vapor sensing.

5.
ACS Sens ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116022

RESUMEN

Efficient and reliable technologies for the on-site detection of illicit drugs are important in drug-facilitated crime investigations. However, the development of such technologies is challenging. Based on the synthetic optimization, introducing a boron ester functional group to the two furanic indicators endows the stimulus-responsive properties synergistically. The ring-opening reaction of the indicators in the presence of amine-containing illicit drugs generated well-known donor-acceptor Stenhouse adducts, accompanied by strong color changes. A small-size and lightweight laminated sensor was integrated based on the outstanding ratiometric variations of the two active furanic indicators. A prototype platform was fabricated equipped with a circuit control, a mini pump, and a signal processing system. A user-friendly detection and efficient screening of amine-containing illicit drugs, including phenethylamines, amphetamines, cathinones, and tryptamines in the liquid states were conducted. The ratiometric response of the sensor was linear in the concentration range of 2.1-10.6 µg·mL-1 for methamphetamine·HCl and methcathinone ·HCl. The detection limits for the two illicit drugs at the sublevel (ng·mL-1) were found to be 8.4 and 9.0 ng·mL-1, respectively. Double-blind field tests and different illicit drugs were evaluated with good screening capability. Successful trials showed the potential applications of the developed prototype platform for efficient and on-site analytical determination.

6.
Plants (Basel) ; 13(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39204766

RESUMEN

In our previous research, we found that trichokonins' (TKs) employment improved the thermotolerance of the Lanzhou lily, a renowned edible crop species endemic to China that is relatively susceptible to high temperatures (HTs). Here, a novel Lanzhou lily GRAS gene, LzSCL9, was identified to respond to heat stress (HS) and HS+TKs treatment based on transcriptome and RT-qPCR analysis. TKs could improve the upregulation of LzSCL9 during long-term HS. The expression profile of LzSCL9 in response to HS with or without TKs treatment showed a significant positive correlation with LzHsfA2a-1, which was previously identified as a key regulator in TKs' conferred resilience to HT. More importantly, overexpression of LzSCL9 in the lily enhanced its tolerance to HTs and silencing LzSCL9 in the lily reduced heat resistance. Taken together, this study identified the positive role of LzSCL9 in TK-induced thermotolerance, thereby preliminarily establishing a molecular mechanism on TKs regulating the thermostability of the Lanzhou lily and providing a new candidate regulator for plant heat-resistant breeding.

7.
Nat Commun ; 15(1): 7599, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217177

RESUMEN

Converting solar energy into fuels is pursued as an attractive route to reduce dependence on fossil fuel. In this context, photothermal catalysis is a very promising approach through converting photons into heat to drive catalytic reactions. There are mainly three key factors that govern the photothermal catalysis performance: maximized solar absorption, minimized thermal emission and excellent catalytic property of catalyst. However, the previous research has focused on improving solar absorption and catalytic performance of catalyst, largely neglected the optimization of thermal emission. Here, we demonstrate an optically selective catalyst based Ti3C2Tx Janus design, that enables minimized thermal emission, maximized solar absorption and good catalytic activity simultaneously, thereby achieving excellent photothermal catalytic performance. When applied to Sabatier reaction and reverse water-gas shift (RWGS) as demonstrations, we obtain an approximately 300% increase in catalytic yield through reducing the thermal emission of catalyst by ~70% under the same irradiation intensity. It is worth noting that the CO2 methanation yield reaches 3317.2 mmol gRu-1 h-1 at light power of 2 W cm-2, setting a performance record among catalysts without active supports. We expect that this design opens up a new pathway for the development of high-performance photothermal catalysts.

8.
Plant Cell Environ ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073746

RESUMEN

Heat stress transcription factors (HSFs) are core factors of plants in response to heat stress (HS), but their regulatory network is complicated and remains elusive in a large part, especially HSFBs. In this study, we reported that the LlERF012-LlHSFA1 module participates in heat stress response (HSR) by directly regulating HSF pathway in lily (Lilium longiflorum). LlHSFB1 was confirmed as a positive regulator in lily thermotolerance and a heat-inducible AP2/ERF member LlERF012 (Ethylene Response Factor 012) was further identified to be a direct trans-activator of LlHSFB1. Overexpression of LlERF012 elevated the thermotolerance of transgenic Arabidopsis and lily, but silencing LlERF012 reduced thermotolerance in lily. Further analysis showed LlERF012 interacted with LlHSFA1, which led to enhanced transactivation activity and DNA-binding capability of LlERF012. In addition, LlERF012 also directly activated the expression of LlHSFA1 by binding its promoter. As expected, we found that LlERF012 bound the promoters of LlHSFA2, LlHSFA3A, and LlHSFA3B to stimulate their expression, and LlERF012-LlHSFA1 interaction enhanced these activation effects. Overall, our data suggested that LlERF012 was a key factor for lily thermotolerance and the LlERF012-LlHSFA1 interaction synergistically regulated the activity of the HSF pathway including the class A and B members, which might be of great significance for coordinating the functions of different HSFs.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124735, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38955066

RESUMEN

Fluorescent aggregates and ensembles have been widely applied in fabrication of fluorescent sensors due to their capacity of encapsulating fluorophores and modulating their photophysical properties. In the present work, fluorescent ensembles based on anionic surfactant SDS assemblies and perylene derivatives (PBIs) were particularly constructed. Three newly synthesized neutral PBI derivatives with different structures, PO, PC1 and PC2, were used for the purpose to evaluate probe structure influence on constructing fluorescent ensembles. The one with hydrophilic side chains, PO, experienced distinct photophysical modulation effect by SDS assemblies. The ensemble based on PO@SDS assemblies displayed effective fluorescence variation to antibiotic aminoglycosides (AGs). To improve cross-reactivity and discrimination capability of ensembles, a second probe, coumarin, was introduced into PO@SDS assemblies. The resultant ternary sensor, CM-PO@SDS, exhibited good qualitative and quantitative detection capabilities, and achieved differentiation of eight AGs and mixed AG samples both in aqueous solution and actual biological fluid, like human serum. Sensing mechanism studies revealed that hydrogen bonding, electrostatic and hydrophobic interactions are involved in the sensing process. This surfactant-based fluorescent ensemble provides a simple and feasible method for assessing AGs levels. Meanwhile, this work may provide some insights to design reasonable probes for constructing effective single-system based discriminative fluorescent amphiphilic sensors.


Asunto(s)
Aminoglicósidos , Antibacterianos , Colorantes Fluorescentes , Perileno , Espectrometría de Fluorescencia , Tensoactivos , Tensoactivos/química , Aminoglicósidos/química , Aminoglicósidos/análisis , Antibacterianos/análisis , Antibacterianos/química , Colorantes Fluorescentes/química , Humanos , Perileno/química , Perileno/análogos & derivados , Dodecil Sulfato de Sodio/química
10.
Chem Soc Rev ; 53(13): 6960-6991, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38836431

RESUMEN

The past few decades have witnessed encouraging progress in the development of high-performance film-based fluorescent sensors (FFSs) for detecting explosives, illicit drugs, chemical warfare agents (CWAs), and hazardous volatile organic chemicals (VOCs), among others. Several FFSs have transitioned from laboratory research to real-world applications, demonstrating their practical relevance. At the heart of FFS technology lies the sensing films, which play a crucial role in determining the analytes and the resulting signals. The selection of sensing fluorophores and the fabrication strategies employed in film construction are key factors that influence the fluorescence properties, active-layer structures, and overall sensing behaviors of these films. This review examines the progress and innovations in the research field of FFSs over the past two decades, focusing on advancements in fluorophore design and active-layer structural engineering. It underscores popular sensing fluorophore scaffolds and the dynamics of excited state processes. Additionally, it delves into six distinct categories of film fabrication technologies and strategies, providing insights into their advantages and limitations. This review further addresses important considerations such as photostability and substrate effects. Concluding with an overview of the field's challenges and prospects, it sheds light on the potential for further development in this burgeoning area.

11.
Anal Chem ; 96(28): 11334-11342, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38943569

RESUMEN

Detecting harmful pathogens in food is not only a crucial aspect of food quality management but also an effective way to ensure public health. In this paper, a complete nuclear magnetic resonance biosensor based on a novel gadolinium (Gd)-targeting molecular probe was developed for the detection of Salmonella in milk. First, streptavidin was conjugated to the activated macromolecular polyaspartic acid (PASP) via an amide reaction to generate SA-PASP. Subsequently, the strong chelating and adsorption properties of PASP toward the lanthanide metal gadolinium ions were exploited to generate the magnetic complex (SA-PASP-Gd). Finally, the magnetic complex was linked to biotinylated antibodies to obtain the bioprobe and achieve the capture of Salmonella. Under optimal experimental conditions, the sensor we have constructed can achieve a rapid detection of Salmonella within 1.5 h, with a detection limit of 7.1 × 103 cfu mL-1.


Asunto(s)
Técnicas Biosensibles , Gadolinio , Leche , Salmonella , Leche/microbiología , Leche/química , Gadolinio/química , Animales , Salmonella/aislamiento & purificación , Técnicas Biosensibles/métodos , Espectroscopía de Resonancia Magnética , Límite de Detección , Inmunoensayo/métodos
12.
J Mater Chem B ; 12(22): 5350-5359, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38738315

RESUMEN

An organelle-selective vision provides insights into the physiological response of plants and crops to environmental stresses in sustainable agriculture ecosystems. Biological applications often require two-photon excited fluorophores with low phototoxicity, high brightness, deep penetration, and tuneable cell entry. We obtained three aniline-based squaraines (SQs) tuned from hydrophobic to hydrophilic characteristics by modifying terminal pendant groups and substituents, and investigated their steady-state absorption and far-red-emitting fluorescence properties. The SQs exhibited two-photon absorption (2PA) ranging from 750 to 870 nm within the first biological spectral window; their structure-property relationships, corresponding to the 2PA cross sections (δ2PA), and structure differences were demonstrated. The maximum δ2PA value was ∼1220 GM at 800 nm for hydrophilic SQ3. Distinct biological staining efficiency and selective SQ bioimaging were evaluated utilizing the onion epidermal cell model. Contrary to the hydrophobic SQ1 results in the onion epidermal cell wall, amphiphilic SQ2 tagged the vacuole and nucleus and SQ3 tagged the vacuole. Distinguishable staining profiles in the roots and leaves were achieved. We believe that this study is the first to demonstrate distinct visualisation efficiency induced by the structure differences of two-photon excited SQs. Our results can help establish the versatile roles of novel near-infrared-emitting SQs in biological applications.


Asunto(s)
Compuestos de Anilina , Ciclobutanos , Colorantes Fluorescentes , Cebollas , Fenoles , Relación Estructura-Actividad , Compuestos de Anilina/química , Compuestos de Anilina/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Cebollas/química , Fenoles/química , Fenoles/farmacología , Ciclobutanos/química , Ciclobutanos/síntesis química , Fotones , Estructura Molecular , Imagen Óptica , Células Vegetales
13.
J Laparoendosc Adv Surg Tech A ; 34(7): 576-580, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38634816

RESUMEN

Purpose: To investigate the clinical value of the bacterial culture of fluid in the surgical area in laparoscopic transanal total mesorectal excision (Lap-taTME) and laparoscopic total mesorectal excision (Lap-TME). Methods: Clinical data of 106 patients with rectal cancer who had undergone surgery were retrospectively collected, including 56 patients in the Lap-taTME group and 50 patients in the Lap-TME group. In the Lap-taTME group, the initial pelvic fluid, the rectal cavity fluid after purse-string suture, and the pelvic cavity fluid after anastomosis were collected and recorded as culture No. 1, No. 2, and No. 3, respectively. In the Lap-TME group, culture No. 1 and No. 3 were collected as done in the Lap-taTME group. The culture results and postoperative complications were statistically analyzed. Results: The positive rate of culture No. 1 was zero in both groups, and there were 6 cases (10.7%) with positive culture No. 2 in the Lap-taTME group. However, the number of patients with positive culture No. 3 (7, 12.5%) and cumulative positive culture cases (11, 19.6%) in the Lap-taTME group were significantly higher than those in the Lap-TME group (0) (all P < .05). Pelvic infection occurred in 4 (7.1%) of the 11 cases (19.6%) with positive culture in the Lap-taTME group, accounting for 36.4% (4/11). There were no significant intergroup differences in anastomotic leakage and pelvic infection (all P > .05). Conclusion: Positive bacterial culture of fluid during Lap-taTME indicates an increased risk of pelvic infection after operation. Lap-taTME is more prone to intraoperative contamination than Lap-TME but does not significantly increase the risk of postoperative pelvic infection.


Asunto(s)
Laparoscopía , Neoplasias del Recto , Humanos , Laparoscopía/métodos , Femenino , Neoplasias del Recto/cirugía , Masculino , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Cirugía Endoscópica Transanal/métodos , Proctectomía/métodos , Proctectomía/efectos adversos , Complicaciones Posoperatorias/microbiología , Adulto , Recto/cirugía , Recto/microbiología , Bacterias/aislamiento & purificación
14.
Angew Chem Int Ed Engl ; 63(25): e202402453, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38622832

RESUMEN

Fabrication of large-area thin films through irreversible reactions remains a formidable task. This study reports a breakthrough strategy for in situ synthesis of large-area, free-standing, robust and multi-stimulus responsive thin films through a catalyst-free and irreversible Katritzky reaction at a liquid-liquid interface. The as resulted films are featured with adjustable thickness of 1-3 µm and an area up to 50 cm2. The thin films exhibit fast photo-mechanical motions (a response time of ca 0.1 s), vapor-mechanical motions, as well as photo-chromic and solvato-chromic behaviors. It was revealed that the reason behind the observable motions is proton transfer from the imine groups to the carbonyl structures within the film induced by photo- and/or dimethyl sulfoxide-stimulus. In addition, the films can harvest anionic radicals and the radicals as captured can be efficiently degraded under UV light illumination. This study provides a new strategy for fabricating smart thin films via interfacially confined irreversible Katritzky reaction.

15.
Proc Natl Acad Sci U S A ; 121(13): e2313334121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38498717

RESUMEN

Multiple facets of global change affect the earth system interactively, with complex consequences for ecosystem functioning and stability. Simultaneous climate and biodiversity change are of particular concern, because biodiversity may contribute to ecosystem resistance and resilience and may mitigate climate change impacts. Yet, the extent and generality of how climate and biodiversity change interact remain insufficiently understood, especially for the decomposition of organic matter, a major determinant of the biosphere-atmosphere carbon feedbacks. With an inter-biome field experiment using large rainfall exclusion facilities, we tested how drought, a common prediction of climate change models for many parts of the world, and biodiversity in the decomposer system drive decomposition in forest ecosystems interactively. Decomposing leaf litter lost less carbon (C) and especially nitrogen (N) in five different forest biomes following partial rainfall exclusion compared to conditions without rainfall exclusion. An increasing complexity of the decomposer community alleviated drought effects, with full compensation when large-bodied invertebrates were present. Leaf litter mixing increased diversity effects, with increasing litter species richness, which contributed to counteracting drought effects on C and N loss, although to a much smaller degree than decomposer community complexity. Our results show at a relevant spatial scale covering distinct climate zones that both, the diversity of decomposer communities and plant litter in forest floors have a strong potential to mitigate drought effects on C and N dynamics during decomposition. Preserving biodiversity at multiple trophic levels contributes to ecosystem resistance and appears critical to maintain ecosystem processes under ongoing climate change.


Asunto(s)
Sequías , Ecosistema , Biodiversidad , Bosques , Hojas de la Planta , Carbono
16.
Nat Mater ; 23(4): 470-478, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38418924

RESUMEN

Two-dimensional materials have emerged as an important research frontier for overcoming the challenges in nanoelectronics and for exploring new physics. Among them, black phosphorus, with a combination of a tunable bandgap and high mobility, is one of the most promising systems. In particular, black phosphorus nanoribbons show excellent electrostatic gate control, which can mitigate short-channel effects in nanoscale transistors. Controlled synthesis of black phosphorus nanoribbons, however, has remained an outstanding problem. Here we report large-area growth of black phosphorus nanoribbons directly on insulating substrates. We seed the chemical vapour transport growth with black phosphorus nanoparticles and obtain uniform, single-crystal nanoribbons oriented exclusively along the [100] crystal direction. With comprehensive structural calculations, we discover that self-passivation at the zigzag edges holds the key to the preferential one-dimensional growth. Field-effect transistors based on individual nanoribbons exhibit on/off ratios up to ~104, confirming the good semiconducting behaviour of the nanoribbons. These results demonstrate the potential of black phosphorus nanoribbons for nanoelectronic devices and also provide a platform for investigating the exotic physics in black phosphorus.

17.
J Phys Chem Lett ; 15(7): 1921-1929, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38345930

RESUMEN

Chemical vapor deposition (CVD) stands out as the most promising method for cost-effective production of high-quality boron nitride nanotubes (BNNTs). Catalysts play a crucial role in BNNT synthesis. This work delves into the impact of oxygen (O) on Ti-based catalysts during the CVD growth of BNNTs. In contrast to the B/TiB2 nanoparticles (NPs) and B/TiN NPs systems, the oxygen-containing precursor B/TiO2 NPs remarkably catalyzes the growth of high-quality and high-purity BNNTs across a wider range of synthesis parameters. Subsequent analyses reveal that TiBO3 acts as an active catalyst, facilitating BNNT growth in Ti-based catalyst systems. Moreover, the nanocomposite film synthesized from BNNTs and PVDF-HFP exhibits excellent mechanical properties and heat dissipation capabilities. Utilizing the nanocomposite film as a thermal interface material effectively enhances the heat dissipation for a 5 W light-emitting diode (LED) chip. Consequently, our research confirms the effectiveness of the Ti-B-O system in catalyzing BNNT growth.

18.
J Phys Chem Lett ; 15(7): 1999-2005, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38349331

RESUMEN

Recent advancements in preparing few-layer black phosphorene (BP) are hindered by edge reconstruction challenges. Our previous studies have revealed the factors contributing to the difficulty of growing few-layer BP. In this study, we have successfully identified three reconstructed edges in bi- and multilayer BP through a combination of the crystal structure analysis by particle swarm optimization (CALYPSO) global structure search and density functional theory (DFT). Notably, the reconstruction between adjacent layers proves more beneficial than self-passivation or maintaining pristine edges. Among the reconstructed edges, the reconstructed ZZ edge is the most stable, regardless of the number of layers. Calculated electronic band structures reveal a significant transition in the electronic properties of black phosphorus nanoribbons (BPNRs), changing from metallic to semiconducting. This insight not only enhances the understanding of the fundamental properties of BP but also provides valuable theoretical guidance for the experimental growth of BPNRs or black phosphorus nanowires (BPNWs).

19.
Hortic Res ; 11(1): uhad254, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38274648

RESUMEN

Gray mold caused by Botrytis cinerea is one of the major threats in lily production. However, limited information is available about the underlying defense mechanism against B. cinerea in lily. Here, we characterized a nuclear-localized class A heat stress transcription factor (HSF)-LlHSFA4 from lily (Lilium longiflorum), which positively regulated the response to B. cinerea infection. LlHSFA4 transcript and its promoter activity were increased by B. cinerea infection in lily, indicating its involvement in the response to B. cinerea. Virus-induced gene silencing (VIGS) of LlHSFA4 impaired the resistance of lily to B. cinerea. Consistent with its role in lily, overexpression of LlHSFA4 in Arabidopsis (Arabidopsis thaliana) enhanced the resistance of transgenic Arabidopsis to B. cinerea infection. Further analysis showed that LlWRKY33 directly activated LlHSFA4 expression. We also found that both LlHSFA4 and LlWRKY33 positively regulated plant response to B. cinerea through reducing cell death and H2O2 accumulation and activating the expression of the reactive oxygen species (ROS) scavenging enzyme gene LlCAT2 (Catalase 2) by binding its prompter, which might contribute to reducing H2O2 accumulation in the infected area. Taken together, our data suggested that there may be a LlWRKY33-LlHSFA4-LlCAT2 regulatory module which confers B. cinerea resistance via reducing cell death and the ROS accumulation.

20.
J Phys Chem Lett ; 15(4): 849-862, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38236759

RESUMEN

A year ago, film-based fluorescent sensors (FFSs) were recognized in the "IUPAC Top Ten Emerging Technologies in Chemistry 2022" due to their extensive application in detecting hidden explosives, illicit drugs, and volatile organic compounds. These sensors offer high sensitivity, specificity, immunity to light scattering, and noninvasiveness. The core of FFSs is the construction of high-performance fluorescent sensing films, which are dependent on the processes of "energy transfer" and "mass transfer" in the active layer and involve complex interactions between sensing molecules and analytes. This Perspective focuses on the latest strategies in constructing these films, emphasizing the design of sensing molecules with various innovative features and structures that enhance the mass transfer efficiency. Additionally, it discusses the ongoing challenges and potential advancements in the field of FFSs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...