Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 358: 120832, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599089

RESUMEN

Polyethylene (PE) is the most productive plastic product and includes three major polymers including high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) variation in the PE depends on the branching of the polymer chain and its crystallinity. Tenebrio obscurus and Tenebrio molitor larvae biodegrade PE. We subsequently tested larval physiology, gut microbiome, oxidative stress, and PE degradation capability and degradation products under high-purity HDPE, LLDPE, and LDPE powders (<300 µm) diets for 21 days at 65 ± 5% humidity and 25 ± 0.5 °C. Our results demonstrated the specific PE consumption rates by T. molitor was 8.04-8.73 mg PE ∙ 100 larvae-1⋅day-1 and by T. obscurus was 7.68-9.31 for LDPE, LLDPE and HDPE, respectively. The larvae digested nearly 40% of the ingested three PE and showed similar survival rates and weight changes but their fat content decreased by 30-50% over 21-day period. All the PE-fed groups exhibited adverse effects, such as increased benzoquinone concentrations, intestinal tissue damage and elevated oxidative stress indicators, compared with bran-fed control. In the current study, the digestive tract or gut microbiome exhibited a high level of adaptability to PE exposure, altering the width of the gut microbial ecological niche and community diversity, revealing notable correlations between Tenebrio species and the physical and chemical properties (PCPs) of PE-MPs, with the gut microbiome and molecular weight change due to biodegradation. An ecotoxicological simulation by T.E.S.T. confirmed that PE degradation products were little ecotoxic to Daphnia magna and Rattus norvegicus providing important novel insights for future investigations into the environmentally-friendly approach of insect-mediated biodegradation of persistent plastics.


Asunto(s)
Biodegradación Ambiental , Larva , Microplásticos , Polietileno , Tenebrio , Animales , Tenebrio/metabolismo , Polietileno/metabolismo , Microplásticos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Estrés Oxidativo
2.
J Hazard Mater ; 458: 131971, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37413798

RESUMEN

Microplastics (MPs) are a significant component of global pollution and cause widespread concern, particularly in wastewater treatment plants. While understanding the impact of MPs on nutrient removal and potential metabolism in biofilm systems is limited. This work investigated the impact of polystyrene (PS) and polyethylene terephthalate (PET) on the performance of biofilm systems. The results revealed that at concentrations of 100 and 1000 µg/L, both PS and PET had almost no effect on the removal of ammonia nitrogen, phosphorus, and chemical oxygen demand, but reduced the removal of total nitrogen by 7.40-16.6%. PS and PET caused cell and membrane damage, as evidenced by increases in reactive oxygen species and lactate dehydrogenase to 136-355% and 144-207% of the control group. Besides, metagenomic analysis demonstrated both PS and PET changed the microbial structure and caused functional differences. Some important genes in nitrite oxidation (e.g. nxrA), denitrification (e.g. narB, nirABD, norB, and nosZ), and electron production process (e.g. mqo, sdh, and mdh) were restrained, meanwhile, species contribution to nitrogen-conversion genes was altered, therefore disturbing nitrogen-conversion metabolism. This work contributes to evaluating the potential risks of biofilm systems exposed to PS and PET, maintaining high nitrogen removal and system stability.


Asunto(s)
Desnitrificación , Microbiota , Aguas Residuales , Microplásticos , Plásticos , Nitrógeno/metabolismo , Reactores Biológicos , Biopelículas , Poliestirenos
3.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37373161

RESUMEN

Common buckwheat (Fagopyrum esculentum M.) is an important traditional miscellaneous grain crop. However, seed-shattering is a significant problem in common buckwheat. To investigate the genetic architecture and genetic regulation of seed-shattering in common buckwheat, we constructed a genetic linkage map using the F2 population of Gr (green-flower mutant and shattering resistance) and UD (white flower and susceptible to shattering), which included eight linkage groups with 174 loci, and detected seven QTLs of pedicel strength. RNA-seq analysis of pedicel in two parents revealed 214 differentially expressed genes DEGs that play roles in phenylpropanoid biosynthesis, vitamin B6 metabolism, and flavonoid biosynthesis. Weighted gene co-expression network analysis (WGCNA) was performed and screened out 19 core hub genes. Untargeted GC-MS analysis detected 138 different metabolites and conjoint analysis screened out 11 DEGs, which were significantly associated with differential metabolites. Furthermore, we identified 43 genes in the QTLs, of which six genes had high expression levels in the pedicel of common buckwheat. Finally, 21 candidate genes were screened out based on the above analysis and gene function. Our results provided additional knowledge for the identification and functions of causal candidate genes responsible for the variation in seed-shattering and would be an invaluable resource for the genetic dissection of common buckwheat resistance-shattering molecular breeding.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Fagopyrum/metabolismo , Transcriptoma , Mapeo Cromosómico , Semillas/metabolismo , Perfilación de la Expresión Génica
4.
Bioresour Technol ; 378: 129013, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37019414

RESUMEN

Azo dyes are significant organic pollutants known for their adverse effects on humans and aquatic life. In this study, anthraquinone-2-sulfonate (AQS) immobilized on biochar (BC) was employed as a novel carrier in up-flow anaerobic fixed-bed reactors to induce specific biofilm formation and promote the biotransformation efficiency of azo dyes. Novel carrier-packed reactor 1 (R1) and BC-packed reactor 2 (R2) were used to treat red reactive 2 (RR2) under continuous operation for 175 days. The decolorization rates of R1 and R2 were 96-83% and 91-73%, respectively. The physicochemical characteristics and extracellular polymeric substances (EPS) of the biofilm revealed a more stable structure in R1. Furthermore, the microbial community in R1 interacted more closely with each other and contained more keystone genera. Overall, this study provides a feasible method for improving the biotransformation of azo dyes, thus providing support for practical applications in wastewater treatment projects.


Asunto(s)
Compuestos Azo , Colorantes , Humanos , Compuestos Azo/química , Anaerobiosis , Colorantes/química , Biopelículas , Reactores Biológicos
5.
Animals (Basel) ; 13(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36830340

RESUMEN

Blue sheep and red deer, second-class key protected animals in China, are sympatric species with a high degree of overlap of food resources in the Helan Mountains, China. Previous studies with blue sheep and red deer in nature have shown that their physiology is closely related to their gut microbiota. However, growth stages and changes occurring in these species in captivity are still unknown. Thus, 16S rRNA gene sequencing was used to explore diversity, composition and function of the gut microbiota in these two animal species. The diversity and structure of the gut microbiota in captive blue sheep and red deer changed at different growth stages, but the dominant microbiota phyla in the gut microbiota remained stable, which was composed of the phyla Firmicutes, Bacteroidetes and Verrucomicrobia. Moreover, gut microbiota diversity in juvenile blue sheep and red deer was low, with the potential for further colonization. Functional predictions showed differences such as red deer transcription being enriched in adults, and blue sheep adults having a higher cell wall/membrane/envelope biogenesis than juveniles. Microbial changes between blue sheep and red deer at different growth stages and between species mainly depend on the abundance of the microbiota, rather than the increase and absence of the bacterial taxa.

6.
Environ Sci Technol ; 57(8): 3031-3041, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36790312

RESUMEN

Tenebrio molitor and Tenebrio obscurus (Coleoptera: Tenebrionidae) larvae are two commercial insects that eat plant and crop residues as diets and also biodegrade synthetic plastics polyethylene (PE). We examined biodegradation of low-density PE (LDPE) foam (Mn = 28.9 kDa and Mw = 342.0 kDa) with and without respective co-diets, i.e., wheat brain (WB) or corn flour (CF), corn straw (CS), and rice straw (RS) at 4:1 (w/w), and their gut microbiome and genetic metabolic functional groups at 27.0 ± 0.5 °C after 28 days of incubation. The presence of co-diets enhanced LDPE consumption in both larvae and broad-depolymerized the ingested LDPE. The diet type shaped gut microbial diversity, potential pathways, and metabolic functions. The sequence of effectiveness of co-diets was WB or CF > CS > RS for larval development and LDPE degradation. Co-occurrence networks indicated that the larvae co-fed with LDPE displayed more complex correlations of gut microbiome than the larvae fed with single diets. The primary diet of WB or CF and crop residues CS and RS provided energy and nitrogen source to significantly enhance LDPE biodegradation with synergistic activities of the gut microbiota. For the larvae fed LDPE and LDPE plus co-diets, nitrogen fixation function was stimulated compared to normal diets and associated with LDPE biodegradation.


Asunto(s)
Escarabajos , Microbioma Gastrointestinal , Tenebrio , Animales , Larva/metabolismo , Tenebrio/metabolismo , Polietileno , Poliestirenos , Carbono/metabolismo , Escarabajos/metabolismo , Dieta
7.
Plant J ; 111(2): 323-334, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35524968

RESUMEN

Buckwheat accumulates abundant flavonoids, which exhibit excellent health-promoting value. Flavonoids biosynthesis is mediated by a variety of phytohormones, among which jasmonates (JAs) induce numerous transcription factors, taking part in regulation of flavonoids biosynthesis genes. However, some transcriptional repressors appeared also induced by JAs. How these transcriptional repressors coordinately participate in JA signaling remains unclear. Here, we found that the disruption of the GCC-box in FtF3H promoter was associated with flavonoids accumulation in Tartary buckwheat. Further, our study illustrated that the nucleus-localized FtERF-EAR3 could inhibit FtF3H expression and flavonoids biosynthesis through binding the GCC-box in the promoter of FtF3H. The JA induced FtERF-EAR3 gene expression while facilitating FtERF-EAR3 protein degradation via the FtBPM3-dependent 26S proteasome pathway. Overall, these results illustrate a precise modulation mechanism of JA-responsive transcription suppressor participating in flavonoid biosynthesis, and will further help to improve the efficiency of flavonoids biosynthesis in Tartary buckwheat.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Fagopyrum/metabolismo , Flavonoides/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Rutina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Sci Total Environ ; 828: 154458, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35278547

RESUMEN

Yellow and dark mealworms (Tenebrio molitor and Tenebrio obscurus) biodegrade commercial polyethylene (PE) materials at a high rate. We examined the impact of physical and chemical properties on biodegradation using high purity microplastics (MPs). These included high-density polyethylene (HDPE), low-density polyethylene (LDPE), and linear low-density polyethylene (LLDPE), all with different weight average molecular weights (Mw) and different crystallinity degrees in T. molitor and T. obscurus larvae. The biodegradation extent in the two mealworms was similar but strongly depended on the polymer type in sequence, since LDPE > LLDPE> HDPE (with respective Mw of 222.5, 110.5 and 182 kDa). When LDPE MPs with Mw of 0.84, 6.4 and 106.8 kDa and HDPE with Mw of 52, 105 and 132.7 kDa were tested, the PE MPs with lower Mw showed a greater extent of depolymerization. The results of dominance analysis indicated that less branching structure and higher crystallinity degree negatively impacted depolymerization and biodegradation. Py-GC/MS analysis confirmed the breaking of the macromolecule backbone as well as the formation of oxidized functional groups after all the tested PE materials passed through the mealworm intestine. The results demonstrated that molecular weight, PE type, branching, and crystallinity degree significantly affect the biodegradation capability of PE by the mealworms, and possibly by other biological systems as well.


Asunto(s)
Tenebrio , Animales , Biodegradación Ambiental , Larva/metabolismo , Microplásticos , Plásticos/metabolismo , Polietileno/metabolismo , Poliestirenos/metabolismo , Tenebrio/metabolismo
9.
J Back Musculoskelet Rehabil ; 35(4): 867-872, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34957988

RESUMEN

BACKGROUND: An ankle sprain is a common joint sprain in sports injury, which is closely related to its physiological position and anatomical characteristics, and may progress into chronic ankle instability after improper early treatment or premature exercise. OBJECTIVE: To analyze the tertiary rehabilitation effect of acute lateral ankle sprain caused by sports training. METHOD: Ninety-six athletes with acute lateral ankle sprain diagnosed from January 2019 to June 2020 were included and divided into the control group and the rehabilitation group using the random number table grouping method, with 48 cases in each group. The two groups received standardized treatment, and the rehabilitation group additionally received tertiary rehabilitation. The American Orthopedic Foot and Ankle Society (AOFAS ) scores, degree of ankle swelling, pain, and re-injury rate were compared between the two groups. RESULTS: The AOFAS scores of the two groups increased after treatment (P< 0.05). The degree of swelling in both groups after treatment was improved (P< 0.05). The Visual Analogue Scale (VAS) scores in both groups declined two weeks after treatment, with lower results observed in the rehabilitation group The two groups showed similar results of the follow-up visit (P< 0.05). CONCLUSION: Rehabilitation exercise on acute lateral ankle sprain effectively relieves ankle swelling and pain.


Asunto(s)
Traumatismos del Tobillo , Traumatismos en Atletas , Inestabilidad de la Articulación , Esguinces y Distensiones , Traumatismos del Tobillo/rehabilitación , Articulación del Tobillo , Traumatismos en Atletas/rehabilitación , Humanos , Dolor
10.
Front Plant Sci ; 13: 1079212, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618631

RESUMEN

Grain size with high heritability and stability is an important selection target during Tartary buckwheat breeding. However, the mechanisms that regulate Tartary buckwheat grain development are unknown. We generated transcriptome and metabolome sequencing from 10 and 15 days past anthesis (DPA) grains of big grain mutant (bg1) and WT, and identified 4108 differentially expressed genes (DEGs) including 93 significantly up-regulated differential genes and 85 significantly down-regulated genes in both stages, simultaneously. Meanwhile, we identified DEGs involved in ubiquitin-proteasome pathway, HAI-KU (IKU) pathway, mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone (auxin, brassinosteroids and cytokinins) transduction pathway and five transcription factor families, including APETALA (AP2), GROWTH-REGULATING FACTORS (GRF), AUXIN RESPONSE FACTOR (ARF), WRKY and MYB. Weighted gene co-expression network analysis (WGCNA) was performed and obtained 9 core DEGs. Conjoint analyses of transcriptome and metabolome sequencing screened out 394 DEGs. Using a combined comprehensive analysis, we identified 24 potential candidate genes that encode E3 ubiquitin-protein ligase HIP1, EMBRYO-DEFECTIVE (EMB) protein, receptor-like protein kinase FERONIA (FER), kinesin-4 protein SRG1, and so on, which may be associated with the big-grain mutant bg1. Finally, a quantitative real-time Polymerase Chain Reaction (qRT-PCR) assay was conducted to validate the identified DEGs. Our results provide additional knowledge for identification and functions of causal candidate genes responsible for the variation in grain size and will be an invaluable resource for the genetic dissection of Tartary buckwheat high-yield molecular breeding.

11.
Front Microbiol ; 13: 1108405, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713154

RESUMEN

Substantial variation in the environment directly causes remodeling of the colonized gut microbiota, controlling community diversity, and functions in the host to tune-up their adaptive states. However, the mechanisms of microbial community assembly in response to environmental changes remain unclear, especially in endangered ruminants. In this study, we analyzed the microbial communities of 37 fecal samples collected from captive and wild Alpine musk deer (Moschus chrysogaster) to characterize the complexity and assembly processes using 16S rRNA gene sequencing. We found significantly different diversities and compositions of gut microbiota among both groups associated with different living environments. Heterogeneous selection was the predominant factor regulating the gut microbiota community under similar climatic conditions, indicating that microbial community assembly was largely driven by deterministic mechanisms. The species co-occurrence network showed complex and tight connections with a higher positive correlation in the wild environment. Moreover, the captive group exhibited significant differences in chemoheterotrophy and fermentation compared with the wild group, but the opposite was observed in animal parasites or symbionts, which might be closely related to diet, energy supply, and healthcare of animals. This study provides a framework basis and new insights into understanding gut microbiota in different environments.

12.
Plants (Basel) ; 10(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34685889

RESUMEN

Buckwheat is a promising pseudo cereal and its cultivation history can be traced back to thousands of years ago in China. Nowadays, buckwheat is not only an ordinary crop but also a symbol of healthy life because of its rich nutritional and pharmacological properties. In this research, the current suitable areas of 19 wild buckwheat species were analyzed by the MaxEnt model, which proved that southwestern China was the diversity center of buckwheat. Their morphological characteristics and geographical distribution were analyzed for the first time. In addition, it was found that the change of buckwheat cultivation in three periods might be related to the green revolution of main crops and national policies. Meanwhile, the Sustainable Yield Index (SYI) value of buckwheat in China was the lowest from 1959 to 2016. Through the MaxEnt model, the potentially suitable areas of wild buckwheat would contract while cultivated buckwheat would expand under climate change. Accordingly, the diversity of wild buckwheat will decrease. Therefore, it is necessary to protect buckwheat resources as much as possible to strengthen the development and utilization of buckwheat resources. Moreover, the promotion of buckwheat diversity will be an important trade-off between food security, population growth, and land use under climate change.

13.
Sci Total Environ ; 789: 147915, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34049145

RESUMEN

Tenebrio obscurus (Coleoptera: Tenebrionidae) larvae are capable of biodegrading polystyrene (PS) but their capacity for polyethylene (PE) degradation and pattern of depolymerization remains unknown. This study fed the larvae of T. obscurus and Tenebrio molitor, which have PE degrading capacity, two commercial low-density PE (LDPE) foams i.e., PE-1 and PE-2, with respective number-average molecular weights (Mn) of 28.9 and 27.3 kDa and weight-average molecular weights (Mw) of 342.0 and 264.1 kDa, over a 36-day period at ambient temperature. The Mw of residual PE in frass (excrement) of T. obscurus, fed with PE-1 and PE-2, decreased by 45.4 ± 0.4% and 34.8 ± 0.3%, respectively, while the respective decrease in frass of T. molitor was 43.3 ± 0.5% and 31.7 ± 0.5%. Data analysis showed that low molecular weight PE (<5.0 kDa) was rapidly digested while longer chain portions (>10.0 kDa) were broken down or cleaved, indicating a broad depolymerization pattern. Mass balance analysis indicated nearly 40% of ingested LDPE was digested to CO2. Antibiotic suppression of gut microbes in T. molitor and T. obscurus larvae with gentamicin obviously reduced their gut microbes on day 15 but did not stop depolymerization because the Mn, Mw and size- average molecular weight (Mz) decreased. This confirmed that LDPE biodegradation in T. obscurus was independent of gut microbes as observed during previous PS degradation in T. molitor, suggesting that the intestinal digestive system could perform LDPE depolymerization. High-throughput sequencing revealed significant shifts in the gut microbial community during bran-fed and unfed conditions in response to LDPE feeding in both Tenebrio species. The respective predominant gut genera of Spiroplasma sp. and Enterococcus sp. were observed in LDPE-fed T. molitor and T. obscurus larvae.


Asunto(s)
Escarabajos , Microbioma Gastrointestinal , Tenebrio , Animales , Larva , Polietileno
15.
Front Plant Sci ; 12: 799904, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975990

RESUMEN

Buckwheat (Fagopyrum genus, Polygonaceae), is an annual or perennial, herbaceous or semi-shrub dicotyledonous plant. There are mainly three cultivated buckwheat species, common buckwheat (Fagopyrum esculentum) is widely cultivated in Asia, Europe, and America, while Tartary buckwheat (F. tataricum) and F. cymosum (also known as F. dibotrys) are mainly cultivated in China. The genus Fagopyrum is taxonomically confusing due to the complex phenotypes of different Fagopyrum species. In this study, the chloroplast (cp) genomes of three Fagopyrum species, F. longistylum, F. leptopodum, F. urophyllum, were sequenced, and five published cp genomes of Fagopyrum were retrieved for comparative analyses. We determined the sequence differentiation, repeated sequences of the cp genomes, and the phylogeny of Fagopyrum species. The eight cp genomes ranged, gene number, gene order, and GC content were presented. Most of variations of Fagopyrum species cp genomes existed in the LSC and SSC regions. Among eight Fagopyrum chloroplast genomes, six variable regions (ndhF-rpl32, trnS-trnG, trnC, trnE-trnT, psbD, and trnV) were detected as promising DNA barcodes. In addition, a total of 66 different SSR (simple sequence repeats) types were found in the eight Fagopyrum species, ranging from 8 to 16 bp. Interestingly, many SSRs showed significant differences especially in some photosystem genes, which provided valuable information for understanding the differences in light adaptation among different Fagopyrum species. Genus Fagopyrum has shown a typical branch that is distinguished from the Rumex, Rheum, and Reynoutria, which supports the unique taxonomic status in Fagopyrum among the Polygonaceae. In addition, phylogenetic analysis based on the cp genomes strongly supported the division of eight Fagopyrum species into two independent evolutionary directions, suggesting that the separation of cymosum group and urophyllum group may be earlier than the flower type differentiation in Fagopyrum plants. The results of the chloroplast-based phylogenetic tree were further supported by the matK and Internal Transcribed Spacer (ITS) sequences of 17 Fagopyrum species, which may help to further anchor the taxonomic status of other members in the urophyllum group in Fagopyrum. This study provides valuable information and high-quality cp genomes for identifying species and evolutionary analysis for future Fagopyrum research.

16.
Food Chem ; 335: 127653, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32739818

RESUMEN

Buckwheat is a gluten-free crop under the family Polygonaceae abundant with beneficial phytochemicals that provide significant health benefits. It is cultivated and adapted in diverse ecological zones all over the world. Recently its popularity is expanding as a nutrient-rich healthy food with low-calories. The bioactive compounds in buckwheat are flavonoids (i.e., rutin, quercetin, orientin, isoorientin, vitexin, and isovitexin), fatty acids, polysaccharides, proteins, and amino acids, iminosugars, dietary fiber, fagopyrins, resistant starch, vitamins, and minerals. Buckwheat possesses high nutritional value due to these bioactive compounds. Additionally, several essential bioactive factors that have long been gaining interest because these compounds are beneficial for healing and preventing several human diseases. The present review demonstrates an overview of the recent researches regarding buckwheat phytochemicals and particularly focusing on the distinct function of bioactive components with their health benefits.


Asunto(s)
Fagopyrum/química , Extractos Vegetales/química , Apigenina/análisis , Fagopyrum/crecimiento & desarrollo , Flavonoides , Glucósidos , Humanos , Valor Nutritivo , Fitoquímicos/química , Quercetina/análisis , Rutina/análisis , Semillas/genética
17.
Water Res ; 189: 116576, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33161328

RESUMEN

In this study, a combined alkaline (ALK) and ultrasonication (ULS) sludge lysis-cryptic pretreatment and anoxic/oxic (AO) system (AO + ALK/ULS) was developed to enhance biological nitrogen removal (BNR) in domestic wastewater with a low carbon/nitrogen (C/N) ratio. A real-time control strategy for the AO + ALK/ULS system was designed to optimize the sludge lysate return ratio (RSLR) under variable sludge concentrations and variations in the influent C/N (⩽ 5). A multi-layered backpropagation artificial neural network (BPANN) model with network topology of 1 input layer, 3 hidden layers, and 1 output layer, using the Levenberg-Marquardt algorithm, was developed and validated. Experimental and predicted data showed significant concurrence, verified with a high regression coefficient (R2 = 0.9513) and accuracy of the BPANN. The BPANN model effectively captured the complex nonlinear relationships between the related input variables and effluent output in the combined lysis-cryptic + BNR system. The model could be used to support the real-time dynamic response and process optimization control to treat low C/N domestic wastewater.


Asunto(s)
Nitrógeno , Aguas Residuales , Reactores Biológicos , Carbono , Desnitrificación , Redes Neurales de la Computación , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
18.
Sci Total Environ ; 756: 144087, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33280873

RESUMEN

Polypropylene (PP), a fossil-based polyolefin plastics widely used worldwide, is non-hydrolyzable and resistant to biodegradation as a major source of plastic pollutants in environment. This study focused on feasibility of PP biodegradation in the larvae of two species of darkling beetles (Coleoptera: Tenebrionidae) i.e., yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) using PP foam with number-, weight-, and size-average molecular weights (Mn, Mw, and Mz) of 109.8, 356.2, and 765.0 kDa, respectively. The tests were conducted in duplicates with respective larvae (300 T. molitor and 200 Z. atratus each incubator) at 25 °C and 65% humidity for over a 35-day period. The larvae of T. molitor and Z. atratus fed with PP foam as sole diet consumed PP at 1.0 ± 0.4 and 3.1 ± 0.4 mg 100 larvae-1 days-1, respectively; when fed the PP foam plus wheat bran, the consumption rates were enhanced by 68.11% and 39.70%, respectively. Gel permeation chromatography analyses of the frass of T. molitor and Z. atratus larvae fed PP only indicated that Mw was decreased by 20.4 ± 0.8% and 9.0 ± 0.4%; Mn was increased by 12.1 ± 0.4% and 61.5 ± 2.5%; Mz was decreased by 33.8 ± 1.5% and 32.0 ± 1.1%, indicating limited extent depolymerization. Oxidation and biodegradation of PP was confirmed through analysis of the residual PP in frass. Depression of gut microbes with the antibiotic gentamicin inhibited PP depolymerization in both T. molitor and Z. atratus larvae. High throughput 16S rRNA sequencing revealed that Citrobacter sp. and Enterobacter sp. were associated with PP diets in the gut microbiome of Z. atratus larvae while Kluyvera was predominant in the T. molitor larvae. The results indicated that PP can be biodegraded in both T. molitor and Z. atratus larvae via gut microbe-dependent depolymerization with diversified microbiomes.


Asunto(s)
Escarabajos , Microbioma Gastrointestinal , Tenebrio , Animales , Larva , Polipropilenos , Poliestirenos , ARN Ribosómico 16S
19.
Thorac Cancer ; 10(8): 1692-1701, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31243884

RESUMEN

The circRNA circAGFG1 is reported to be important in triple-negative breast cancer progression. However, the mechanism of circAGFG1 in non-small-cell lung cancer (NSCLC) remains unknown. In this study, expression of circAGFG1 was determined by real-time PCR in 20 pairs of NSCLC tissues and adjacent tissues. Next, functional experiments with circAGFG1 were performed in vitro to evaluate the role of circAGFG1 in tumor metastasis and growth. Meanwhile, a dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were used to explore the interaction between circAGFG1 and miR-203. Our results revealed that expression levels of circAGFG1 and miR-203 are upregulated in non-small-cell lung cancer tissues. CircAGFG1 enhances NSCLC cell proliferation, invasion, migration and epithelial-mesenchymal transition in vitro. Mechanistic analyses indicated that circAGFG1 acts as a sponge for miR-203 to repress the effect of miR-203 on its target, ZNF281. In conclusion, our study suggests that circAGFG1 promotes NSCLC growth and metastasis though a circAGFG1/miR-203/ZNF281 axis and may represent a novel therapeutic target.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo , Proteínas Represoras/metabolismo , Células A549 , Sitios de Unión , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/genética , Metástasis de la Neoplasia , Proteínas de Complejo Poro Nuclear/biosíntesis , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Transfección , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA