Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 680
Filtrar
1.
Medicine (Baltimore) ; 103(18): e37837, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701259

RESUMEN

In this study, we aimed to investigate the involvement of PANoptosis, a form of regulated cell death, in the development of steroid-induced osteonecrosis of the femoral head (SONFH). The underlying pathogenesis of PANoptosis in SONFH remains unclear. To address this, we employed bioinformatics approaches to analyze the key genes associated with PANoptosis. Our analysis was based on the GSE123568 dataset, allowing us to investigate both the expression profiles of PANoptosis-related genes (PRGs) and the immune profiles in SONFHallowing us to investigate the expression profiles of PRGs as well as the immune profiles in SONFH. We conducted cluster classification based on PRGs and assessed immune cell infiltration. Additionally, we used the weighted gene co-expression network analysis (WGCNA) algorithm to identify cluster-specific hub genes. Furthermore, we developed an optimal machine learning model to identify the key predictive genes responsible for SONFH progression. We also constructed a nomogram model with high predictive accuracy for assessing risk factors in SONFH patients, and validated the model using external data (area under the curve; AUC = 1.000). Furthermore, we identified potential drug targets for SONFH through the Coremine medical database. Using the optimal machine learning model, we found that 2 PRGs, CASP1 and MLKL, were significantly correlated with the key predictive genes and exhibited higher expression levels in SONFH. Our analysis revealed the existence of 2 distinct PANoptosis molecular subtypes (C1 and C2) within SONFH. Importantly, we observed significant variations in the distribution of immune cells across these subtypes, with C2 displaying higher levels of immune cell infiltration. Gene set variation analysis indicated that C2 was closely associated with multiple immune responses. In conclusion, our study sheds light on the intricate relationship between PANoptosis and SONFH. We successfully developed a risk predictive model for SONFH patients and different SONFH subtypes. These findings enhance our understanding of the pathogenesis of SONFH and offer potential insights into therapeutic strategies.


Asunto(s)
Biología Computacional , Necrosis de la Cabeza Femoral , Humanos , Necrosis de la Cabeza Femoral/genética , Necrosis de la Cabeza Femoral/inducido químicamente , Biología Computacional/métodos , Aprendizaje Automático , Esteroides/efectos adversos , Caspasa 1/genética , Nomogramas , Perfilación de la Expresión Génica/métodos , Proteínas Quinasas/genética
2.
BMC Pediatr ; 24(1): 341, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755560

RESUMEN

BACKGROUND: The Premonitory Urge for Tics Scale (PUTS) is a common self-report measure of premonitory urges for patients with tic disorders. This study aims to evaluate the Chinese version of the PUTS (PUTS-C) and to explore its association with psychiatric symptoms in Chinese children diagnosed with tic disorders. METHODS: The psychometric evaluation involved 204 outpatients with tic disorders, aged 7-16 years, who were divided into two age groups: (7-10 years, n = 103; 11-16 years, n = 95). RESULTS: The PUTS-C demonstrated good internal consistency (McDonald'sω = 0.84) and two-week test-retest reliability (0.76). We observed a statistically significant correlation between the total PUTS-C score and various Yale Global Tic Severity Scale (YGTSS) subscales and total tic severity scores. The PUTS-C score also showed significant correlations with the Children Yale-Brown Obsessive Compulsive Scale (CY-BOCS), Screening Child Anxiety-Related Emotional Disorders (SCARED), and Children's Depression Inventory (CDI). Notably, premonitory urges independently predicted tic severity, beyond the influence of comorbid symptoms. A two-factor structure of the PUTS-C was identified in the total sample through factor analysis. CONCLUSIONS: The PUTS-C possesses acceptable validity and good reliability. It appears that premonitory urges in Chinese patients with tic disorders are associated with obsessive-compulsive symptoms, anxiety, and depression, but can independently predict tic severity. Specific PUTS-C factors possibly related to motor and vocal tics. Future research should continue to investigate age-related differences and the association with tics and other sensory symptoms.


Asunto(s)
Psicometría , Trastornos de Tic , Humanos , Niño , Trastornos de Tic/diagnóstico , Trastornos de Tic/psicología , Masculino , Adolescente , Femenino , Reproducibilidad de los Resultados , China , Escalas de Valoración Psiquiátrica , Índice de Severidad de la Enfermedad , Autoinforme
3.
Eur J Cancer Prev ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38568190

RESUMEN

OBJECTIVE: Increasing evidence has shown that dietary behaviors are closely correlated with the carcinogenesis and progression of many types of cancer. However, few studies have assessed the global diet-related burden of cancer. This study aimed to estimate the pooled burdens and trends of five types of cancers attributable to dietary behaviors. METHODS: Data regarding cancer attributable to dietary behaviors were extracted from the Global Burden of Disease study 2019, including the death cases and age-standardized death rates, and disability-adjusted life years (DALYs) estimated according to diseases, age, sex, the socio-demographic index (SDI) and location. RESULTS: According to the Global Burden of Disease study 2019, five types of cancer were affected by dietary behaviors: colon and rectum cancer; tracheal, bronchus and lung cancer; stomach cancer; esophageal cancer and breast cancer. Unhealthy dietary behaviors for cancer caused a total of 605.4 thousand deaths and 13951.3 thousand DALYs globally. The burden of cancer attributable to dietary risks was higher for men than for women. The highest age-standardized death rates in 2019 were observed in southern Latin America, and the lowest rates were observed in North Africa and the Middle East. The greatest increases in the age-standardized death rates, from 1990 to 2019, were found in Western Sub-Saharan Africa, with the greatest decreases in Central Asia. The highest attributable proportions of death or DALYs were colon and rectum cancer. The greatest diet-related cancer burden was observed in regions with a high-middle SDI. CONCLUSION: Global age-standardized deaths and DALYs rates attributable to diet-related cancer are considerable and cause a substantial burden. Successful population-wide initiatives targeting unhealthy dietary behaviors would reduce this burden.

4.
J Virol ; 98(5): e0195723, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38557247

RESUMEN

Zoonotic coronaviruses pose a continuous threat to human health, with newly identified bat-borne viruses like swine acute diarrhea syndrome coronavirus (SADS-CoV) causing high mortality in piglets. In vitro studies indicate that SADS-CoV can infect cell lines from diverse species, including humans, highlighting its potential risk to human health. However, the lack of tools to study viral entry, along with the absence of vaccines or antiviral therapies, perpetuates this threat. To address this, we engineered an infectious molecular clone of Vesicular Stomatitis Virus (VSV), replacing its native glycoprotein (G) with SADS-CoV spike (S) and inserting a Venus reporter at the 3' leader region to generate a replication-competent rVSV-Venus-SADS S virus. Serial passages of rVSV-Venus-SADS S led to the identification of an 11-amino-acid truncation in the cytoplasmic tail of the S protein, which allowed more efficient viral propagation due to increased cell membrane anchoring of the S protein. The S protein was integrated into rVSV-Venus-SADS SΔ11 particles, susceptible to neutralization by sera from SADS-CoV S1 protein-immunized rabbits. Additionally, we found that TMPRSS2 promotes SADS-CoV spike-mediated cell entry. Furthermore, we assessed the serum-neutralizing ability of mice vaccinated with rVSV-Venus-SADS SΔ11 using a prime-boost immunization strategy, revealing effective neutralizing antibodies against SADS-CoV infection. In conclusion, we have developed a safe and practical tool for studying SADS-CoV entry and exploring the potential of a recombinant VSV-vectored SADS-CoV vaccine.IMPORTANCEZoonotic coronaviruses, like swine acute diarrhea syndrome coronavirus (SADS-CoV), pose a continual threat to human and animal health. To combat this, we engineered a safe and efficient tool by modifying the Vesicular Stomatitis Virus (VSV), creating a replication-competent rVSV-Venus-SADS S virus. Through serial passages, we optimized the virus for enhanced membrane anchoring, a key factor in viral propagation. This modified virus, rVSV-Venus-SADS SΔ11, proved susceptible to neutralization, opening avenues for potential vaccines. Additionally, our study revealed the role of TMPRSS2 in SADS-CoV entry. Mice vaccinated with rVSV-Venus-SADS SΔ11 developed potent neutralizing antibodies against SADS-CoV. In conclusion, our work presents a secure and practical tool for studying SADS-CoV entry and explores the promise of a recombinant VSV-vectored SADS-CoV vaccine.


Asunto(s)
Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , Replicación Viral , Animales , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Ratones , Humanos , Anticuerpos Antivirales/inmunología , Porcinos , Anticuerpos Neutralizantes/inmunología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/prevención & control , Vacunas Virales/inmunología , Vacunas Virales/genética , Virus de la Estomatitis Vesicular Indiana/genética , Alphacoronavirus/genética , Vesiculovirus/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Línea Celular , Células Vero , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/inmunología , Conejos , Chlorocebus aethiops , Células HEK293
5.
Viruses ; 16(4)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38675895

RESUMEN

Macrophages play multiple roles in innate immunity including phagocytosing pathogens, modulating the inflammatory response, presenting antigens, and recruiting other immune cells. Tissue-resident macrophages (TRMs) adapt to the local microenvironment and can exhibit different immune responses upon encountering distinct pathogens. In this study, we generated induced macrophages (iMACs) derived from human pluripotent stem cells (hPSCs) to investigate the interactions between the macrophages and various human pathogens, including the hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and Streptococcus pneumoniae. iMACs can engulf all three pathogens. A comparison of the RNA-seq data of the iMACs encountering these pathogens revealed that the pathogens activated distinct gene networks related to viral response and inflammation in iMACs. Interestingly, in the presence of both HCV and host cells, iMACs upregulated different sets of genes involved in immune cell migration and chemotaxis. Finally, we constructed an image-based high-content analysis system consisting of iMACs, recombinant GFP-HCV, and hepatic cells to evaluate the effect of a chemical inhibitor on HCV infection. In summary, we developed a human cell-based in vitro model to study the macrophage response to human viral and bacterial infections; the results of the transcriptome analysis indicated that the iMACs were a useful resource for modeling pathogen-macrophage-tissue microenvironment interactions.


Asunto(s)
Hepacivirus , Macrófagos , Células Madre Pluripotentes , SARS-CoV-2 , Humanos , Macrófagos/inmunología , Macrófagos/virología , Hepacivirus/inmunología , Hepacivirus/fisiología , SARS-CoV-2/inmunología , Células Madre Pluripotentes/inmunología , Streptococcus pneumoniae/inmunología , COVID-19/inmunología , COVID-19/virología , Hepatitis C/inmunología , Hepatitis C/virología , Fagocitosis , Virosis/inmunología , Inmunidad Innata
6.
Cell Rep ; 43(3): 113965, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38492217

RESUMEN

G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibits stress granule assembly and interacts with G3BP1/2 via an ITFG motif, including residue F17, in the N protein. Prior studies examining the impact of the G3PB1-N interaction on SARS-CoV-2 replication have produced inconsistent findings, and the role of this interaction in pathogenesis is unknown. Here, we use structural and biochemical analyses to define the residues required for G3BP1-N interaction and structure-guided mutagenesis to selectively disrupt this interaction. We find that N-F17A mutation causes highly specific loss of interaction with G3BP1/2. SARS-CoV-2 N-F17A fails to inhibit stress granule assembly in cells, has decreased viral replication, and causes decreased pathology in vivo. Further mechanistic studies indicate that the N-F17-mediated G3BP1-N interaction promotes infection by limiting sequestration of viral genomic RNA (gRNA) into stress granules.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , ADN Helicasas/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Virulencia , ARN Guía de Sistemas CRISPR-Cas , Proteínas de la Nucleocápside , Replicación Viral , ARN Viral/genética
7.
Langenbecks Arch Surg ; 409(1): 81, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430305

RESUMEN

PURPOSE: This study aims to compare the efficiency and clinical outcomes between the suctioning ureteral access sheath (UAS) group and the traditional UAS group during retrograde intrarenal surgery (RIRS) for kidney stones and explore the impact of suctioning UAS on postoperative infectious complications. METHODS: We retrospectively reviewed the clinical data of 162 patients with kidney stones who underwent RIRS with a traditional UAS (n = 74) or a suctioning UAS (n = 71) between March 2021 and May 2023. RESULTS: The mean operative time in suctioning UAS group (39.03 ± 18.01 s) was significantly shorter than that (49.73 ± 20.77 s) in the traditional UAS group (P = 0.037). The mean postoperative hospital stay was significantly shorter in the suctioning UAS group (1.57 ± 0.82d) compared with the traditional UAS group (2.30 ± 1.6 2 d) (P = 0.032). The instant SFRs were significantly higher in the suctioning UAS group (88.73%) than in the traditional UAS group (75.68%) (P = 0.040). The overall SFR in suctioning UAS group (92.96%) was slightly higher than the traditional UAS group (85.14%). The incidence of overall complications was significantly higher in the traditional UAS group (35.14%) than in the suctioning UAS group (16.90%) (P = 0.013). In multivariate analysis, female patients (OR 0.053, P = 0.018), positive urine WBC (OR 10.382, P = 0.034), operative time > 60 min (OR 20.231, P = 0.032), and the application of traditional UAS (OR 0.042, P = 0.017) were independent risk factors associated with infectious complications. CONCLUSION: We demonstrated that suctioning UAS provided a higher instant SFR and fewer postoperative infectious complications during RIRS, and patients with predictable risk factors for infectious complications could potentially benefit from the use of the suctioning UAS.


Asunto(s)
Cálculos Renales , Uréter , Humanos , Femenino , Estudios Retrospectivos , Cálculos Renales/cirugía , Tiempo de Internación , Análisis Multivariante , Complicaciones Posoperatorias/epidemiología
8.
Cell Biochem Funct ; 42(3): e3991, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38532652

RESUMEN

At present, atmospheric and room-temperature plasma (ARTP) is regarded as a new and powerful mutagenesis technology with the advantages of environment-friendliness, operation under mild conditions, and fast mutagenesis speed. Compared with traditional mutagenesis strategies, ARTP is used mainly to change the structure of microbial DNA, enzymes, and proteins through a series of physical, chemical, and electromagnetic effects with the organisms, leading to nucleotide breakage, conversion or inversion, causing various DNA damages, so as to screen out the microbial mutants with better biological characteristics. As a result, in recent years, ARTP mutagenesis and the combination of ARTP with traditional mutagenesis have been widely used in microbiology, showing great potential for application. In this review, the recent progress of ARTP mutagenesis in different application fields and bottlenecks of this technology are systematically summarized, with a view to providing a theoretical basis and technical support for better application. Finally, the outlook of ARTP mutagenesis is presented, and we identify the challenges in the field of microbial mutagenesis by ARTP.


Asunto(s)
Daño del ADN , ADN , Temperatura , Mutagénesis
9.
Eur J Ophthalmol ; : 11206721241238878, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38454852

RESUMEN

PURPOSE: To systematically analysis the burden and trends of blindness and vision loss for those aged ≥55 years from 1990 to 2019 and to predict trends over the next few years. METHODS: The data were extracted from the Global Burden of Disease Study (GBD) 2019. Trends from 1990 to 2019 were calculated using average annual percentage change (AAPC) by joinpoint regression analysis. Bayesian age-period-cohort (BAPC) models were used to predict future trends. RESULTS: In 2019, the global prevalence of blindness and vision loss was 471.1 million with 15.9 million disability-adjusted life-years (DALYs) for those aged ≥55 years. These numbers will reach 640.3 million cases and 18.9 million DALYs in 2030. The prevalence rate (per 100,000 population) increased from 32,137.8 (95% uncertainty interval [UI], 26,307.9-39,246.3) in 1990 to 33,509 (95% UI, 27,435.5-40,996.2) in 2019, with an AAPC of 0.143 (95% confidence interval [CI], 0.125-0.161; P < 0.001). The DALY rate (per 100,000 population) decreased from 632.9 (95% UI, 447.7-870.9) in 1990 to 579.3 (95% UI, 405.2-803.4) in 2019, with an AAPC of -0.293 (95% CI, -0.323-[-]0.263). Although the prevalence rates of cataracts, age-related macular degeneration, glaucoma, and near vision loss showed increasing trends from 1990 to 2019, the DALY rates indicated a downward trend for all blindness-causing diseases. The burden is heavier for women and in low Socio-demographic Index (SDI) regions. CONCLUSIONS: Despite a decline from 2001 to 2019, the burden of blindness and vision loss, measured by prevalence and DALYs, continues to rise after adjusting for population growth and aging. Blindness and vision loss are significant public health burdens, especially for women and in low-SDI regions.

10.
Int J Biol Macromol ; 266(Pt 1): 131257, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554908

RESUMEN

The infected wounds pose one of the major threats to human health today. To address this issue, it is necessary to develop innovative wound dressings with superior antibacterial activity and other properties. Due to its potent antibacterial, antioxidant, and immune-boosting properties, epigallocatechin gallate (EGCG) has been widely utilized. In this study, a multifunctional curdlan hydrogel loading EGCG (Cur-EGCGH3) was designed. Cur-EGCGH3 exhibited excellent physicochemical properties, good biocompatibility, hemostatic, antibacterial, and antioxidant activities. Also, ELISA data showed that Cur-EGCGH3 stimulated macrophages to secrete pro-inflammatory and pro-regenerative cytokines. Cell scratch results indicated that Cur-EGCGH3 promoted the migration of NIH3T3 and HUVECs. In vivo experiments confirmed that Cur-EGCGH3 could inhibit bacterial infection of the infected wounds, accelerate hemostasis, and promote epithelial regeneration and collagen deposition. These results demonstrated that Cur-EGCGH3 holds promise for promoting healing of the infected wounds.


Asunto(s)
Antibacterianos , Catequina , Catequina/análogos & derivados , Hemostáticos , Hidrogeles , Cicatrización de Heridas , beta-Glucanos , Catequina/farmacología , Catequina/química , Animales , Cicatrización de Heridas/efectos de los fármacos , Ratones , beta-Glucanos/química , beta-Glucanos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Células 3T3 NIH , Hemostáticos/farmacología , Hemostáticos/química , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Antioxidantes/farmacología , Antioxidantes/química , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos
11.
Med ; 5(4): 291-310.e5, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38417440

RESUMEN

BACKGROUND: Immune checkpoint blockade has shown low response rates for advanced breast cancer, and combination strategies are needed. Microwave ablation (MWA) may be a trigger of antitumor immunity. This window-of-opportunity trial (ClinicalTrials.gov: NCT04805736) was conducted to determine the safety and feasibility of preoperative camrelizumab (an anti-PD-1 antibody) combined with MWA in the treatment of early-stage breast cancer. METHODS: Sixty participants were randomized to preoperatively receive single-dose camrelizumab alone (n = 20), MWA alone (n = 20), or camrelizumab+MWA (n = 20). A random number table was used to allocate interventions. The primary outcome was the safety and feasibility of MWA combined with camrelizumab. FINDINGS: Camrelizumab and MWA were well tolerated alone and in combination without delays in prescheduled surgery. No treatment-related grade III/IV adverse events were observed. Different from in the single-dose camrelizumab or MWA group, participants showed stable counts of blood cells after combination therapy. After combination therapy, peripheral CD8+ T cells showed enhanced cytotoxic and effect-memory functions. Clonal expansional CD8+ T cells showed higher cytotoxic activity and effector memory- and tumor-specific signatures than emergent clones after combination therapy. Enhanced interactions between clonal expansional CD8+ T cells and monocytes were observed, suggesting that monocytes contributed to the enhanced functions of clonal expansional CD8+ T cells. Major histocompatibility complex (MHC) class I-related pathways and interferon signaling pathways were activated in monocytes by combination therapy. CONCLUSIONS: Camrelizumab combined with MWA was feasible for early-stage breast cancer. Peripheral CD8+ T cells were activated after combination therapy, dependent on monocytes with activated MHC class I pathways. FUNDING: This study was supported by the Natural Science Foundation of Jiangsu Province (BK20230017).


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/inducido químicamente , Linfocitos T CD8-positivos/metabolismo , Microondas/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos
12.
mBio ; 15(4): e0346823, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38411112

RESUMEN

Powassan virus (POWV) is a tick-borne flavivirus known for causing fatal neuroinvasive diseases in humans. Recently, there has been a noticeable increase in POWV infections, emphasizing the urgency of understanding viral replication, pathogenesis, and developing interventions. Notably, there are no approved vaccines or therapeutics for POWV, and its classification as a biosafety level-3 (BSL-3) agent hampers research. To overcome these obstacles, we developed a replicon system, a self-replicating RNA lacking structural proteins, making it safe to operate in a BSL-2 environment. We constructed a POWV replicon carrying the Gaussia luciferase (Gluc) reporter gene and blasticidin (BSD) selectable marker. Continuous BSD selection led to obtain a stable POWV replicon-carrying Huh7 cell lines. We identified cell culture adaptive mutations G4079A, G4944T and G6256A, resulting in NS2AR195K, NS3G122G, and NS3V560M, enhancing RNA replication. We demonstrated the utility of the POWV replicon system for high-throughput screening (HTS) assay to identify promising antivirals against POWV replication. We further explored the applications of the POWV replicon system, generating single-round infectious particles (SRIPs) by transfecting Huh7-POWV replicon cells with plasmids encoding viral capsid (C), premembrane (prM), and envelope (E) proteins, and revealed the distinct antigenic profiles of POWV with ZIKV. In summary, the POWV replicon and SRIP systems represent crucial platforms for genetic and functional analysis of the POWV life cycle and facilitating the discovery of antiviral drugs.IMPORTANCEIn light of the recent surge in human infections caused by POWV, a biosafety level-3 (BSL-3) classified virus, there is a pressing need to understand the viral life cycle and the development of effective countermeasures. To address this, we have pioneered the establishment of a POWV RNA replicon system and a replicon-based POWV SRIP system. Importantly, these systems are operable in BSL-2 laboratories, enabling comprehensive investigations into the viral life cycle and facilitating antiviral screening. In summary, these useful tools are poised to advance our understanding of the POWV life cycle and expedite the development of antiviral interventions.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Infección por el Virus Zika , Virus Zika , Humanos , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Proteínas , Técnicas de Cultivo de Célula , Antivirales , ARN
13.
Int Urol Nephrol ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372840

RESUMEN

PURPOSE: Calcium-sensing receptor (CASR) influences the expression pattern of multiple genes in renal tubular epithelial cells. The objective of this inquiry was to explore the molecular mechanisms of CASR in renal tubular epithelial cells and nephrolithiasis. METHODS: HK-2 cells were transfected with lentiviruses carrying either CASR (named CASR) or an empty vector negative control (named NC), as well as shRNA intended to target CASR (named shCASR) or its corresponding negative control (named shNC). CCK-8 assay was used to detect the effect of CASR on the proliferation of HK-2 cells. RNA-Sequencing was applied to explore potential pathways regulated by CASR in HK-2 cells. RESULTS: PCR and western blot results showed that CASR expression was significantly increased in CASR cells and was decreased in shCASR cells when compared to their corresponding negative control, respectively. CCK-8 assay revealed that CASR inhibited the proliferation of HK-2 cells. RNA-Sequencing results suggested that the shCASR HK-2 cells exhibited a significant up-regulation of 345 genes and a down-regulation of 366 genes. These differentially expressed genes (DEGs) were related to cell apoptosis and cell development. In CASR HK-2 cells, 1103 DEGs primarily functioned in mitochondrial energy metabolism, and amino acid metabolism. With the Venn diagram, 4 DEGs (Clorf116, ENPP3, IL20RB, and CLDN2) were selected as the hub genes regulated by CASR. Enrichment analysis revealed that these hub genes were involved in cell-cell junction, and epithelial cell development. CONCLUSIONS: In summary, our investigation has the potential to offer novel perspectives on CASR regulating cell-cell junction in HK-2 cells.

14.
Enzyme Microb Technol ; 175: 110407, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341913

RESUMEN

Due to the extreme living conditions, extremophiles have unique characteristics in morphology, structure, physiology, biochemistry, molecular evolution mechanism and so on. Extremophiles have superior growth and synthesis capabilities under harsh conditions compared to conventional microorganisms, allowing for unsterilized fermentation processes and thus better performance in low-cost production. In recent years, due to the development and optimization of molecular biology, synthetic biology and fermentation technology, the identification and screening technology of extremophiles has been greatly improved. In this review, we summarize techniques for the identification and screening of extremophiles and review their applications in industrial biotechnology in recent years. In addition, the facts and perspectives gathered in this review suggest that next-generation industrial biotechnology (NGIBs) based on engineered extremophiles holds the promise of simplifying biofuturing processes, establishing open, non-sterilized continuous fermentation production systems, and utilizing low-cost substrates to make NGIBs attractive and cost-effective bioprocessing technologies for sustainable manufacturing.


Asunto(s)
Extremófilos , Extremófilos/genética , Biotecnología/métodos , Fermentación
15.
Heliyon ; 10(2): e24454, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293535

RESUMEN

"Oncometabolite" 2-hydroxyglutarate (2-HG) is an aberrant metabolite found in tumor cells, exerting a pivotal influence on tumor progression. Recent studies have unveiled its impact on the proliferation, activation, and differentiation of anti-tumor T cells. Moreover, 2-HG regulates the function of innate immune components, including macrophages, dendritic cells, natural killer cells, and the complement system. Elevated levels of 2-HG hinder α-KG-dependent dioxygenases (α-KGDDs), contributing to tumorigenesis by disrupting epigenetic regulation, genome integrity, hypoxia-inducible factors (HIF) signaling, and cellular metabolism. The chiral molecular structure of 2-HG produces two enantiomers: D-2-HG and L-2-HG, each with distinct origins and biological functions. Efforts to inhibit D-2-HG and leverage the potential of L-2-HG have demonstrated efficacy in cancer immunotherapy. This review delves into the metabolism, biological functions, and impacts on the tumor immune microenvironment (TIME) of 2-HG, providing a comprehensive exploration of the intricate relationship between 2-HG and antitumor immunity. Additionally, we examine the potential clinical applications of targeted therapy for 2-HG, highlighting recent breakthroughs as well as the existing challenges.

16.
PLoS One ; 19(1): e0294293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38271385

RESUMEN

In this paper, considering the combined effects of nonlinear oil film forces and cracks on the rotor-bearing system, the differential equations of motion with 4 degrees of freedom are established by Lagrangian method. Then, the Lundgren-Kutta method is used to solve them and the results of the model are compared with the experimental data. The study demonstrate that the cracked rotor-bearing system is relatively stable at subcritical speeds, mostly in the period-1 motion. But near 1/3 of the critical speed, there is an inner loop in its whirl orbit and a significant increase in the 2x frequency component. When the system speed rises to the region near 1/2 of the critical speed, though the bifurcation motion and a relatively high 2x frequency can be observed, there are no other reliable fault characteristics. The study proves that the rotor crack fault diagnosis method based on the whirl orbits is convincing for slant cracked rotors.


Asunto(s)
Dinámicas no Lineales , Movimiento (Física)
17.
J Exp Bot ; 75(7): 1887-1902, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38079376

RESUMEN

Cold stress is a serious threat to global crop production and food security, but plant cold resistance is accompanied by reductions in growth and yield. In this study, we determined that the novel gene BcGSTF10 in non-heading Chinese cabbage [NHCC; Brassica campestris (syn. Brassica rapa) ssp. chinensis] is implicated in resistance to cold stress. Biochemical and genetic analyses demonstrated that BcGSTF10 interacts with BcICE1 to induce C-REPEAT BINDING FACTOR (CBF) genes that enhance freezing tolerance in NHCC and in Arabidopsis. However, BcCBF2 represses BcGSTF10 and the latter promotes growth in NHCC and Arabidopsis. This dual function of BcGSTF10 indicates its pivotal role in balancing cold stress and growth, and this important understanding has the potential to inform the future development of strategies to breed crops that are both climate-resilient and high-yielding.


Asunto(s)
Arabidopsis , Brassica , Respuesta al Choque por Frío , Glutatión Transferasa/genética , Fitomejoramiento , Brassica/genética , Regulación de la Expresión Génica de las Plantas
18.
Adv Sci (Weinh) ; 11(1): e2305142, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37983610

RESUMEN

IGF2BP2 is a new identified N6-methyladenosine (m6A) reader and associated with poor prognosis in many tumors. However, its role and related mechanism in breast cancer, especially in triple-negative breast cancer (TNBC), remains unclear. In this study, it is found that IGF2BP2 is highly expressed in TNBC due to the lower methylation level in its promoter region. Functional and mechanical studies displayed that IGF2BP2 could promote TNBC proliferation and the G1/S phase transition of the cell cycle via directly regulating CDK6 in an m6A-dependent manner. Surprising, the regulation of protein levels of CDK6 by IGF2BP2 is related to the changes in translation rate during translation initiation, rather than mRNA stability. Moreover, EIF4A1 is found to be recruited by IGF2BP2 to promote the translation output of CDK6, providing new evidence for a regulatory role of IGF2BP2 between m6A methylation and translation. Downregulation of IGF2BP2 in TNBC cell could enhance the sensitivity to abemaciclib, a CDK4/6 inhibitor. To sum up, our study revealed IGF2BP2 could facilitate the translation output of CDK6 via recruiting EIF4A1 and also provided a potential therapeutic target for the diagnosis and treatment of TNBC, as well as a new strategy for broadening the drug indications for CDK4/6 inhibitors.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Ciclo Celular/genética , Regulación hacia Abajo , Estabilidad del ARN , Proteínas de Unión al ARN/genética , Quinasa 6 Dependiente de la Ciclina/genética
19.
BMC Vet Res ; 19(1): 255, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053138

RESUMEN

BACKGROUND: Multidrug resistance in Enterobacteriaceae including resistance to quinolones is rising worldwide. The development of resistance may lead to the emergence of new transmission mechanisms. In this study, the collection of different E. coli was performed from animals and subjected to subsequent procedures including pulsed-field gel electrophoresis, micro-broth dilution method, polymerase chain reaction. Whole genome sequencing of E. coli C3 was performed to detect the affinity, antimicrobial resistance and major carriers of the isolates. RESULTS: A total of 66 E. coli were isolated and their antibiotic resistance genes, frequency of horizontal transfer and genetic environment of E. coli C3 were determined. The results showed there were both different and same types in PFGE typing, indicating clonal transmission of E. coli among different animals. The detection of antimicrobial resistance and major antibiotic resistance genes and the plasmid transfer results showed that strains from different sources had high levels of resistance to commonly used clinical antibiotics and could be spread horizontally. Whole-genome sequencing discovered a novel ICE mobile element. CONCLUSION: In summary, the antimicrobial resistance of E. coli in northeast China is a serious issue and there is a risk of antimicrobial resistance transmission. Meanwhile, a novel ICE mobile element appeared in the process of antimicrobial resistance formation.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Infecciones por Escherichia coli/veterinaria , Enterobacteriaceae , China , Pruebas de Sensibilidad Microbiana/veterinaria , Plásmidos , Electroforesis en Gel de Campo Pulsado/veterinaria , beta-Lactamasas/genética
20.
Front Oncol ; 13: 1049147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053661

RESUMEN

Aim: There is accumulating evidence indicating that ASS1 is closely related to tumors. No pan-cancer analysis of ASS1 was available. Methods: Here we explored the gene expression and survival analysis of ASS1 across thirty-three tumors based on the datasets of the TCGA (Cancer Genome Atlas), the GEO (Gene Expression Omnibus), and the GEPIA2 (Gene Expression Profiling Interactive Analysis, version 2). Results: ASS1 is highly expressed in most normal tissues and is related to the progression of some tumors. We also report ASS1 genetic alteration and their association with tumor prognosis and report differences in ASS1 phosphorylation sites between tumors and control normal tissues. ASS1 expression was associated with the infiltration of cancer-associated fibroblasts (CAFs) for the TCGA tumors of BRCA (Breast invasive carcinoma), CESC (Cervical squamous cell carcinoma and endocervical adenocarcinoma), COAD (Colon adenocarcinoma), ESCA (Esophageal carcinoma), SKCM (Skin cutaneous melanoma), SKCM-Metastasis, TGCT (Testicular germ cell tumors), and endothelial cell for the tumors of BRCA, BRCA-Basal, CESC, ESCA, KIRC (Kidney renal clear cell carcinoma), LUAD (Lung adenocarcinoma), LUSC (Lung squamous cell carcinoma), SKCM, SKCM-Metastasis, SKCM-Primary, STAD (Stomach adenocarcinoma), and TGCT. The KEGG and GO analysis were used to analyze ASS1-related signaling pathways. Finally, we used Huh7 cell line to verify the function of ASS1 in vitro. After ASS1 knockdown using small interfering RNA (siRNA), the proliferation and invasion of Huh7 were enhanced, cyclin D1 was up-regulated, and anti-apoptotic protein bax was down-regulated, suggesting that ASS1 is a tumor suppressor gene in hepatocellular carcinoma. Conclusion: Our first pan-cancer study offers a relatively comprehensive understanding of the roles of ASS1 in different tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA