Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Virology ; 596: 110112, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38797063

RESUMEN

Seed transmission is among the primary strategies utilized by plant viruses for long-distance dissemination, leading to the widespread occurrence of viral diseases globally. Watermelon virus A (WVA) is a novel wamavirus first found in watermelon. However, the pathogenicity and transmission mode of WVA are still unclear. Our previous work found that the incidence of WVA in bottle gourd is very high. Based on that, the pathogenicity and seed transmission mode of WVA in bottle gourd were studied. Compared with healthy plant, bottle gourd infected by WVA showed no visible disease symptom. Moreover, in the seeds of 20 bottle gourd cultivars, the occurrence of WVA varies from 0 to 90%, and one cultivar even reaches 100%. We also found that the transmission rate from seeds to the resulting seedlings was 100%. Furthermore, WVA was present in both the seed coat and embryo, and seed disinfection cannot eliminate WVA. Besides the seed and leaf, WVA can also be detected in stem, flower, and fruit, but not in the root. To our surprise, the level of transmission from WVA-infected plants to seeds was more than 85%. In addition, the viral accumulations of both WVA and CGMMV were increased in plants with co-infection of WVA and CGMMV. Taken together, these findings reveal that WVA is a seed-transmitted virus which causes no disease symptom in bottle gourd, and there may be synergism between WVA and CGMMV.


Asunto(s)
Citrullus , Enfermedades de las Plantas , Semillas , Enfermedades de las Plantas/virología , Semillas/virología , Citrullus/virología
2.
BMC Genomics ; 25(1): 191, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373891

RESUMEN

BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum species complex (RSSC) is one of the devastating diseases in crop production, seriously reducing the yield of crops. R. pseudosolanacearum, is known for its broad infrasubspecific diversity and comprises 36 sequevars that are currently known. Previous studies found that R. pseudosolanacearum contained four sequevars (13, 14, 17 and 54) isolated from sunflowers sown in the same field. RESULTS: Here, we provided the complete genomes and the results of genome comparison of the four sequevars strains (RS639, RS642, RS647, and RS650). Four strains showed different pathogenicities to the same cultivars and different host ranges. Their genome sizes were about 5.84 ~ 5.94 Mb, encoding 5002 ~ 5079 genes and the average G + C content of 66.85% ~ 67%. Among the coding genes, 146 ~ 159 specific gene families (contained 150 ~ 160 genes) were found in the chromosomes and 34 ~ 77 specific gene families (contained 34 ~ 78 genes) in the megaplasmids from four strains. The average nucleotide identify (ANI) values between any two strains ranged from 99.05% ~ 99.71%, and the proportion of the total base length of collinear blocks accounts for the total gene length of corresponding genome was all more than 93.82%. Then, we performed a search for genomic islands, prophage sequences, the gene clusters macromolecular secretion systems, type III secreted effectors and other virulence factors in these strains, which provided detailed comparison results of their presence and distinctive features compared to the reference strain GMI1000. Among them, the number and types of T2SS gene clusters were different in the four strains, among which RS650 included all five types. T4SS gene cluster of RS639 and RS647 were missed. In the T6SS gene cluster, several genes were inserted in the RS639, RS647, and RS650, and gene deletion was also detected in the RS642. A total of 78 kinds of type III secreted effectors were found, which included 52 core and 9 specific effectors in four strains. CONCLUSION: This study not only provided the complete genomes of multiple R. pseudosolanacearum strains isolated from a new host, but also revealed the differences in their genomic levels through comparative genomics. Furthermore, these findings expand human knowledge about the range of hosts that Ralstonia can infect, and potentially contribute to exploring rules and factors of the genetic evolution and analyzing its pathogenic mechanism.


Asunto(s)
Asteraceae , Helianthus , Ralstonia solanacearum , Humanos , Ralstonia/genética , Genómica , Ralstonia solanacearum/genética , Filogenia , Enfermedades de las Plantas/microbiología
3.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068889

RESUMEN

Cucumber green mottle mosaic virus (CGMMV) is a typical seed-borne tobamovirus that mainly infects cucurbit crops. Due to the rapid growth of international trade, CGMMV has spread worldwide and become a significant threat to cucurbit industry. Despite various studies focusing on the interaction between CGMMV and host plants, the molecular mechanism of CGMMV infection is still unclear. In this study, we utilized transcriptome and metabolome analyses to investigate the antiviral response of bottle gourd (Lagenaria siceraria) under CGMMV stress. The transcriptome analysis revealed that in comparison to mock-inoculated bottle gourd, 1929 differently expressed genes (DEGs) were identified in CGMMV-inoculated bottle gourd. Among them, 1397 genes were upregulated while 532 genes were downregulated. KEGG pathway enrichment indicated that the DEGs were mainly involved in pathways including the metabolic pathway, the biosynthesis of secondary metabolites, plant hormone signal transduction, plant-pathogen interaction, and starch and sucrose metabolism. The metabolome result showed that there were 76 differentially accumulated metabolites (DAMs), of which 69 metabolites were up-accumulated, and 7 metabolites were down-accumulated. These DAMs were clustered into several pathways, including biosynthesis of secondary metabolites, tyrosine metabolism, flavonoid biosynthesis, carbon metabolism, and plant hormone signal transduction. Combining the transcriptome and metabolome results, the genes and metabolites involved in the jasmonic acid and its derivatives (JAs) synthesis pathway were significantly induced upon CGMMV infection. The silencing of the allene oxide synthase (AOS) gene, which is the key gene involved in JAs synthesis, reduced CGMMV accumulation. These findings suggest that JAs may facilitate CGMMV infection in bottle gourd.


Asunto(s)
Citrullus , Cucurbita , Tobamovirus , Transcriptoma , Citrullus/genética , Reguladores del Crecimiento de las Plantas , Comercio , Internacionalidad , Tobamovirus/genética , Cucurbita/genética , Metaboloma , Enfermedades de las Plantas/genética
4.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36293146

RESUMEN

Fatty acid and retinol binding proteins (FAR) are unique proteins found in nematodes and are considered potential targets for controlling these parasites. However, their functions in nematode parasitism and pathogenicity and interaction with hosts are still unclear. In this study, we investigated the specific roles of rice white tip nematodes (RWTNs), Aphelenchoides besseyi, and a protein, Ab-FAR-1, to elucidate the parasitic and pathogenic processes of nematodes. The results showed that the expression level of Ab-far-1 was significantly up-regulated after A. besseyi infection of the plant. The immunofluorescence and subcellular localisation showed that Ab-FAR-1 was secreted into plant tissues mainly through the body wall of nematodes and might act in the nucleus and cytoplasm of plant cells. The pathogenicity of RWTNs was enhanced in Arabidopsis thaliana overexpressing Ab-FAR-1 and inhibited in Ab-far-1 RNAi A. thaliana. Yeast two-hybrid, Co-IP, BiFC, and nematode inoculation experiments showed that Ab-FAR-1 could interact with the A. thaliana actin-depolymerizing factor protein AtADF3, and the A. thaliana adf3 mutant was more susceptible to nematodes. An in vitro actin filament depolymerisation assay demonstrated that Ab-FAR-1 could inhibit AtADF3-mediated depolymerisation of actin filaments, and the turnover process of cellular actin filaments was also affected in A. thaliana overexpressing Ab-FAR-1. In addition, flg22-mediated host defence responses were suppressed in A. thaliana overexpressing Ab-FAR-1 and adf3 mutants. Therefore, this study confirmed that RWTNs can affect the turnover of actin filament remodelling mediated by AtADF3 through Ab-FAR-1 secretion and thus inhibit plant PAMP-triggered immunity (PTI), promoting the parasitism and pathogenicity of nematodes.


Asunto(s)
Arabidopsis , Rabdítidos , Tylenchida , Tylenchoidea , Animales , Arabidopsis/metabolismo , Virulencia , Moléculas de Patrón Molecular Asociado a Patógenos , Actinas/metabolismo , Proteínas del Helminto/metabolismo , Tylenchida/fisiología , Rabdítidos/metabolismo , Proteínas de Unión al Retinol/metabolismo , Ácidos Grasos , Citoesqueleto de Actina/metabolismo , Enfermedades de las Plantas/parasitología , Tylenchoidea/metabolismo
5.
Sci Rep ; 11(1): 18521, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531469

RESUMEN

Plant kinases containing the LysM domain play important roles in pathogen recognition and self-defense reactions. And it could recognize microbe-associated molecules including chitin and other polypeptides. The white tip nematode Aphelenchoides besseyi is a migratory parasitic nematode that infects plant shoots. It is distributed over almost all rice-producing areas and causes up to 50% economic losses. The rice OsRLK3 gene was a defense-related LysM kinase gene of rice. This study showed that the rice LysM kinase OsRLK3 could be induced by flg22, jasmonic acid, salicylic acid, and chitin. An interaction gene, Ab-atps from A. besseyi, was identified by screening the interaction between the rice gene OsRLK3 and an A. besseyi cDNA library using yeast two-hybrid screening. Ab-atps is a novel ATP synthase gene with a full length of 1341 bp, coding for 183 amino acids. The mRNA of Ab-atps was located in the esophagus and reproductive system of A. besseyi. The expression of Ab-atps was assessed at different developmental stages of the nematode and found to be the highest in the juvenile, followed by the egg, female, and male. Reproduction was significantly decreased in nematodes treated with Ab-atps double-stranded RNA (dsRNA) (p < 0.05). Transient expression experiments showed that Ab-ATPS-GFP was distributed in the nucleus, cytoplasm, and cell membrane, and Ab-ATPS-GFP triggered plant cell death. OsRLK3 was expressed significantly higher at 0.5 day and 1 day (p < 0.05) in rice plants inoculated with nematodes treated with Ab-atps dsRNA and gfp dsRNA for 0.5-7 days, respectively. Further, OsRLK3 expression under Ab-atps dsRNA treatment was significantly lower than with gfp dsRNA treatment at 0.5 day (p < 0.05) and significantly higher than with gfp dsRNA treatment at 1 day (p < 0.05). These results suggest that rice OsRLK3 could interact with A. besseyi Ab-atps, which plays an important role in growth, reproduction, and infection of the nematode. Our findings provide a theoretical basis to further understand the parasitic strategy of A. besseyi and its interaction mechanism with host plants, suggesting new ideas and targets for controlling A. besseyi.


Asunto(s)
Adenosina Trifosfatasas/genética , Interacciones Huésped-Parásitos/genética , Oryza/parasitología , Enfermedades de las Plantas/parasitología , Rabdítidos/genética , Animales , Oryza/genética , Enfermedades de las Plantas/genética
6.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34576221

RESUMEN

RNA interference (RNAi) is a powerful tool for the analysis of gene function in nematodes. Fatty acid and retinol binding protein (FAR) is a protein that only exists in nematodes and plays an important role in their life activities. The rice white-tip nematode (RWTN), Aphelenchoides besseyi, is a migratory endoparasitic plant nematode that causes serious damage in agricultural production. In this study, the expression levels of eight RWTN genes were effectively decreased when RWTN was fed Ab-far-n (n: 1-8) hairpin RNA transgenic Botrytis cinerea (ARTBn). These functions of the far gene family were identified to be consistent and diverse through phenotypic changes after any gene was silenced. Such consistency indicates that the body lengths of the females were significantly shortened after silencing any of the eight Ab-far genes. The diversities were mainly manifested as follows: (1) Reproduction of nematodes was clearly inhibited after Ab-far-1 to Ab-far-4 were silenced. In addition, silencing Ab-far-2 could inhibit the pathogenicity of nematodes to Arabidopsis; (2) gonad length of female nematodes was significantly shortened after Ab-far-2 and Ab-far-4 were silenced; (3) proportion of male nematodes significantly increased in the adult population after Ab-far-1, Ab-far-3, and Ab-far-5 were silenced, whereas the proportion of adult nematodes significantly decreased in the nematode population after Ab-far-4 were silenced. (4) Fat storage of nematodes significantly decreased after Ab-far-3, Ab-far-4, and Ab-far-7 were silenced. To our knowledge, this is the first study to demonstrate that Ab-far genes affect sex formation and lipid metabolism in nematodes, which provides valuable data for further study and control of RWTNs.


Asunto(s)
Botrytis/genética , Proteínas de Unión a Ácidos Grasos/fisiología , Perfilación de la Expresión Génica , Nematodos/metabolismo , Nematodos/patogenicidad , Interferencia de ARN , Proteínas de Unión al Retinol/fisiología , Animales , Animales Modificados Genéticamente , Arabidopsis/parasitología , Proteínas de Unión a Ácidos Grasos/genética , Ácidos Grasos/química , Silenciador del Gen , Proteínas del Helminto/genética , Fenotipo , Proteínas de Unión al Retinol/genética , Transcriptoma
7.
RNA Biol ; 18(10): 1424-1433, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33218290

RESUMEN

RNA interference (RNAi) is a powerful tool for gene functional analysis of plant-parasitic nematodes (PPNs). RNAi involving soaking in a dsRNA solution and in planta methods is commonly applied in the study of gene function in PPNs. However, certain problems restrict the application of these methods. Therefore, more convenient and effective RNAi methods need to be established for different PPNs according to their biological characteristics. In this study, the fatty acid and retinoid binding protein genes (Ab-far-1, Ab-far-4, and combinatorial Ab-far-1 and Ab-far-4) of the rice white tip nematode (RWTN), Aphelenchoides besseyi, were used as target genes to construct a fungal RNAi vector, and the Ab-far-n dsRNA transgenic Botrytis cinerea (ARTBn) were generated using Agrobacterium-mediated transformation technology. After RWTN feeding on ARTBn, the expression of Ab-far-1 and Ab-far-4 in the nematodes was efficiently silenced, and the reproduction and pathogenicity of the nematodes were clearly inhibited. The Ab-far-1 and Ab-far-4 co-RNAi effects were better than the effects when each gene was individually targeted with RNAi. Additionally, the RNAi induced when RWTNs fed on ARTB1 were persistent and heritable. Thus, a new method of fungus-mediated RNAi was established for fungivorous PPNs and was verified as effective and applicable to the study of nematode gene function. This technique will remove the technological bottlenecks and provide a new method to studying the multiple genes with polygene co-RNAi in fungivorous PPNs. This study also provides a theoretical basis and new thought for further study of the gene function in PPNs.Abbreviations: FAR(Fatty acid and retinol-binding proteins); RWTN (The rice white tip nematode, Aphelenchoides besseyi); Ab-far-n (Fatty acid and retinol binding protein gene of A. besseyi); ARTB1 (Ab-far-1 hpRNA transgenic Botrytis cinerea); ARTB4 (Ab-far-4 hpRNA transgenic Botrytis cinerea); ARTB1/4 (combinatorial Ab-far-1 and Ab-far-4 hpRNA transgenic B. cinerea); EVTB (Empty vector transgenic B. cinerea); GRTB (eGFP hpRNA transgenic B. cinerea); WTB (Wild-type B. cinerea).


Asunto(s)
Botrytis/crecimiento & desarrollo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión al Retinol/genética , Tylenchida/crecimiento & desarrollo , Animales , Botrytis/genética , Silenciador del Gen , Proteínas del Helminto/genética , Oryza/parasitología , Interferencia de ARN , ARN Bicatenario/genética , Transfección , Tylenchida/genética , Tylenchida/metabolismo
8.
Funct Integr Genomics ; 20(3): 367-381, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31713833

RESUMEN

White-tip nematode, Aphelenchoides besseyi is a kind of widely distributed migratory parasitic nematode that can infect plant shoots. Transcriptome sequencing of plant parasitic nematodes and their host plants is helpful for understanding their interaction relationship. This study first reported expression patterns of defense-related genes in rice, and rice transcriptomes at different periods after infection with A. besseyi. The result showed that the defense response pathways of rice changed obviously in the early stage of A. besseyi infection, including upregulated salicylic acid and jasmonate pathways and a downregulated ethylene pathway. Transcriptome analysis results suggested that A. besseyi infection was associated with the downregulation of multiple genes related to photosynthesis with possible suppression of the photosynthetic activity. It suggested that the photosynthesis system of rice could be suppressed by infections of migratory nematodes, including A. besseyi and Hirschmanniella oryzae, but was stimulated by that of a sedentary nematode, Meloidogyne graminicola, by comparing our study with the reported transcriptome. OS09G0417800 (OsWRKY62) might play an important role in the interaction of migratory nematodes and rice. It also indicated that the infection strategy of both A. besseyi and the reported migratory nematode H. oryzae was similar to that of the fungal pathogen Magnaporthe grisea. These results provided an interesting starting point to elucidate the mechanism of the interaction between rice and A. besseyi, as well as the host and migratory plant nematodes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/genética , Fotosíntesis , Enfermedades de las Plantas/genética , Transcriptoma , Tylenchoidea/patogenicidad , Animales , Regulación hacia Abajo , Oryza/metabolismo , Oryza/parasitología , Enfermedades de las Plantas/parasitología
9.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703422

RESUMEN

The chrysanthemum foliar nematode (CFN), Aphelenchoides ritzemabosi, is a migratory, plant-parasitic nematode that is widely distributed and infects the aboveground parts of many plants. The fatty acid- and retinoid-binding proteins (FAR) are nematode-specific proteins that are involved in the development, reproduction, and infection of nematodes and are secreted into the tissues to disrupt the plant defense reaction. In this study, we obtained the full-length sequence of the FAR gene (Ar-far-1) from CFN, which is 727 bp and includes a 546 bp ORF that encodes 181 amino acids. Ar-FAR-1 from CFN has the highest sequence similarity to Ab-FAR-1 from A. besseyi, and they are located within the same branch of the phylogenetic tree. Fluorescence-based ligand-binding analysis confirmed that recombinant Ar-FAR-1 was bound to fatty acids and retinol. Ar-far-1 mRNA was expressed in the muscle layer, intestine, female genital system, and egg of CFN, and more highly expressed in females than in males among the four developmental stages of CFN. We demonstrated that the reproduction number and infection capacity of CFN decreased significantly when Ar-far-1 was effectively silenced by in vitro RNAi. Ar-far-1 plays an important role in the development, reproduction, infectivity, and pathogenesis of CFN and may be used as an effective target gene for the control of CFN. The results provide meaningful data about the parasitic and pathogenic genes of CFN to study the interaction mechanism between plant-parasitic nematodes and hosts.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Genes de Helminto , Proteínas del Helminto , Proteínas de Unión al Retinol , Rabdítidos , Animales , Chrysanthemum/parasitología , Proteínas de Unión a Ácidos Grasos/química , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas del Helminto/química , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Enfermedades de las Plantas/parasitología , Hojas de la Planta/parasitología , Proteínas de Unión al Retinol/química , Proteínas de Unión al Retinol/genética , Proteínas de Unión al Retinol/metabolismo , Rabdítidos/química , Rabdítidos/genética , Rabdítidos/metabolismo
10.
PLoS One ; 13(6): e0199935, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29958285

RESUMEN

The rice white tip nematode, Aphelenchoides besseyi, is widely distributed in rice planting areas worldwide and causes serious economic losses. Cathepsin genes have been demonstrated to have importance in studying the reproduction, development, pathogenicity, and control methods of plant nematodes. In this paper, a novel cathepsin B gene, Ab-cb-1, was found and cloned. The Ab-cb-1 gene was 1347 bp in length and encodes 369 amino acids. The Ab-CB-1 protein contains characteristic occluding loops but no signal peptide. A homology analysis showed that Ab-CB-1 had the highest identity value (64%) to the known amino acid sequence of cathepsin B-like cysteine protease 6 from Toxocara canis. When Ab-cb-1 was expressed in a prokaryotic system, the protein massed approximately 45 kDa and could decompose carrot callus. Ab-cb-1 mRNA was localized in the nematode intestine. The relative expression level of Ab-cb-1 in the A. besseyi Ab-S24 population, which had high reproductivity, was approximately 6.9 times that in the Ab-N10 population, which had low reproductivity, and the difference was significant (p<0.05). The Ab-cb-1 expression level was highest in females; the expression levels in males, juveniles and eggs were 30%, 12.2% and 5% of that in females, respectively, and the differences were significant among all four stages (p<0.05). Nematodes of the Ab-S24 population were treated with Ab-cb-1 dsRNA for 12 h, 24 h, 36 h and 48 h, and their reproduction decreased with increasing time. These results demonstrated that Ab-CB-1 was a digestive enzyme with hydrolytic protease properties and that Ab-cb-1 played an important role in the reproduction of A. besseyi.


Asunto(s)
Catepsina B/genética , Proteínas del Helminto/genética , Rabdítidos/genética , Caracteres Sexuales , Animales , Catepsina B/metabolismo , Femenino , Proteínas del Helminto/metabolismo , Masculino , Rabdítidos/enzimología
11.
Bioinformatics ; 34(17): 2936-2943, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29617938

RESUMEN

Motivation: The rice white tip nematode (RWTN) Aphelenchoides besseyi is a migratory plant parasitic nematode that infects the aboveground parts of plants. Fatty acid- and retinoid-binding (FAR) proteins are nematode-specific proteins that are involved in many important biological processes. Genes encoding FAR proteins have been identified in many species of nematodes, which indicated that nematodes may produce more than one type of FAR protein. The main goal of this study is to find new molecular targets including new far genes that will help control RWTN, and reduce the economic damage caused by RWTN. Results: Two RWTN populations with different levels of pathogenicity and reproduction were sequenced and analyzed with next-generation sequencing. 17 087 transcripts were annotated using six databases and 1696 differentially expressed genes (DEGs) were identified between the two RWTN populations. Seven new Ab-far genes were identified from the transcriptome data of the two RWTN populations which is the first to identify multiple far genes in plant parasitic nematodes. This study is the first to identify far genes in the nervous system of nematodes and the first to report a transcriptome sequencing analysis of different RWTN populations. The results help elucidate the genes related to parasitism and pathogenicity and also contribute to the identification of new target genes and development of new methods to control RWTN. Availability and implementation: Our data are publicly available at Sequence Read Archive (SRA) database and GenBank database. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Perfilación de la Expresión Génica , Proteínas del Helminto/genética , Tylenchida , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Oryza , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...