Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7718, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231994

RESUMEN

Spatial control over features within multifunctional catalysts can unlock efficient one-pot cascade reactions, which are themselves a pathway to aviation biofuels via hydrodeoxygenation. A synthesis strategy that encompasses spatial orthogonality, i.e., one in which different catalytic species are deposited exclusively within discrete locations of a support architecture, is one solution that permits control over potential interactions between different sites and the cascade process. Here, we report a Pd doped hierarchical zeolite, in which Pd nanoparticles are selectively deposited within the mesopores, while acidity is retained solely within the micropores of ZSM-5. This spatial segregation facilitates hydrodeoxygenation while suppressing undesirable decarboxylation and decarbonation, yielding significant enhancements in activity (30.6 vs 3.6 moldodecane molPd-1 h-1) and selectivity (C12:C11 5.2 vs 1.9) relative to a conventionally prepared counterpart (via wet impregnation). Herein, multifunctional material design can realise efficient fatty acid hydrodeoxygenation, thus advancing the field and inspiring future developments in rationalised catalyst design.

2.
bioRxiv ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-38895445

RESUMEN

Delivery of drug using nanocarriers tethered with vasculature-targeting epitopes aims to maximize the therapeutic efficacy of the drug while minimizing the drug side effects. Circadian rhythm which is governed by the central nervous system has implications for targeted drug delivery due to sleep-wake cycle changes in blood flow dynamics. This paper presents an advanced fluid dynamics modeling method that is based on viscous incompressible shear-rate fluid (blood) coupled with an advection-diffusion equation to simulate the formation of drug concentration gradients in the blood stream and buildup of concentration at the targeted site. The method is equipped with an experimentally calibrated nanoparticle-endothelial cell adhesion model that employs Robin boundary conditions to describe nanoparticle retention based on probability of adhesion, a friction model accounting for surface roughness of endothelial cell layer, and a dispersion model based on Taylor-Aris expression for effective diffusion in the boundary layer. The computational model is first experimentally validated and then tested on engineered bifurcating arterial systems where impedance boundary conditions are applied at the outflow to account for the downstream resistance at each outlet. It is then applied to a virtual geometric model of an in vivo arterial tree developed through MRI-based image processing techniques. These simulations highlight the potential of the computational model for drug transport, adhesion, and retention at multiple sites in virtual in vivo models. The model provides a virtual platform for exploring circadian rhythm modulated blood flow for targeted drug delivery while minimizing the in vivo experimentation. Statement of Significance: A novel integration of nanoparticle-based drug delivery framework with shear-rate dependent blood flow model is presented. The framework is comprised of a unique combination of mechanics-based dispersion model, an asperity model for endothelium surface roughness, and a stochastic nanoparticle-endothelial cell adhesion model. Simulations of MRI based in vivo carotid artery system showcase the effects of vessel geometry on nanoparticle adhesion and retention at the targeted site. Vessel geometry and target site location impact nanoparticle adhesion; curved and bifurcating regions favor local accumulation of drug. It is also shown that aligning drug administration with circadian rhythm and sleep cycle can enhance the efficacy of drug delivery processes. These simulations highlight the potential of the computational modeling for exploring circadian rhythm modulated blood flow for targeted drug delivery while minimizing the in vivo experimentation.

3.
Proc Natl Acad Sci U S A ; 121(22): e2314533121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38776373

RESUMEN

Nanoparticles tethered with vasculature-binding epitopes have been used to deliver the drug into injured or diseased tissues via the bloodstream. However, the extent that blood flow dynamics affects nanoparticle retention at the target site after adhesion needs to be better understood. This knowledge gap potentially underlies significantly different therapeutic efficacies between animal models and humans. An experimentally validated mathematical model that accurately simulates the effects of blood flow on nanoparticle adhesion and retention, thus circumventing the limitations of conventional trial-and-error-based drug design in animal models, is lacking. This paper addresses this technical bottleneck and presents an integrated mathematical method that derives heavily from a unique combination of a mechanics-based dispersion model for nanoparticle transport and diffusion in the boundary layers, an asperity model to account for surface roughness of endothelium, and an experimentally calibrated stochastic nanoparticle-cell adhesion model to describe nanoparticle adhesion and subsequent retention at the target site under external flow. PLGA-b-HA nanoparticles tethered with VHSPNKK peptides that specifically bind to vascular cell adhesion molecules on the inflamed vascular wall were investigated. The computational model revealed that larger particles perform better in adhesion and retention at the endothelium for the particle sizes suitable for drug delivery applications and within physiologically relevant shear rates. The computational model corresponded closely to the in vitro experiments which demonstrates the impact that model-based simulations can have on optimizing nanocarriers in vascular microenvironments, thereby substantially reducing in vivo experimentation as well as the development costs.


Asunto(s)
Nanopartículas , Nanopartículas/química , Humanos , Ligandos , Sistemas de Liberación de Medicamentos/métodos , Adhesión Celular , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química
4.
Nano Converg ; 11(1): 18, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689075

RESUMEN

Ischemia-reperfusion injury (IRI) poses significant challenges across various organ systems, including the heart, brain, and kidneys. Exosomes have shown great potentials and applications in mitigating IRI-induced cell and tissue damage through modulating inflammatory responses, enhancing angiogenesis, and promoting tissue repair. Despite these advances, a more systematic understanding of exosomes from different sources and their biotransport is critical for optimizing therapeutic efficacy and accelerating the clinical adoption of exosomes for IRI therapies. Therefore, this review article overviews the administration routes of exosomes from different sources, such as mesenchymal stem cells and other somatic cells, in the context of IRI treatment. Furthermore, this article covers how the delivered exosomes modulate molecular pathways of recipient cells, aiding in the prevention of cell death and the promotions of regeneration in IRI models. In the end, this article discusses the ongoing research efforts and propose future research directions of exosome-based therapies.

5.
Chempluschem ; 89(1): e202300545, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37884457

RESUMEN

Synthesis of 2,5-furandicarboxylic acid (FDCA) can be achieved via catalytic oxidation of 5-hydroxymethylfurfural (5-HMF), in which both base and catalyst play important roles. This work presents the development of a simple synthesis method (based on a commercial parent 10 wt.% Pd/C catalyst) to prepare the bimetallic AuPd alloy catalysts (i. e., AuPd/C) for selective 5-HMF oxidation to FDCA. When using the strong base of NaOH, Pd and Au cooperate to promote FDCA formation when deployed either separately (as a physical mixture of the monometallic Au/C and Pd/C catalysts) or ideally alloyed (AuPd/C), with complete 5-HMF conversion and FDCA yields of 66 % vs 77 %, respectively. However, NaOH also promoted the formation of undesired by-products, leading to poor mass balances (<81 %). Comparatively, under weak base conditions (using NaHCO3 ), an increase in Au loading in the AuPd/C catalysts enhances 5-HMF conversion and FDCA productivity (due to the enhanced carbonyl oxidation capacity) which coincides with a superior mass balances of >97 %. Yet, the excessive Pd content in the AuPd/C catalysts was not beneficial in promoting FDCA formation.

6.
Angew Chem Int Ed Engl ; 63(1): e202316356, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37983661

RESUMEN

Superglassy membranes synthesised by polymers of intrinsic microporosity (PIMs) suffer from physical aging and show poor gas permeance over time, especially thin membranes, due to the fast rearrangement of nonequilibrium polymer chains. Herein, we constructed a novel PIM-1 thin film nanocomposite membrane (TFN) using nanosized UiO-66-NH2 (≈10 nm)/carboxylated PIM-1 (cPIM-1) as the composite filler. Unlike conventional fillers, which interact with the polymer only via the surface, the UiO-66-NH2 /cPIM-1 forms a stable three-dimensional (3D) network intertwining with the polymer chains, being very effective to impede chain relaxation, and thus physical aging. Nanosizing of UiO-66-NH2 was achieved by regulating the nucleation kinetics using carbon quantum dots (CQD) during the synthesis. This led to increased surface area, and hence more functional groups to bond with cPIM-1 (via hydrogen bonding between -NH2 and -COOH groups), which also improved interfacial compatibility between the 3D network and polymer chains avoiding defect formation. As a result, the novel TFN showed significantly improved performance in gas separation along with reduced aging (i.e. ≈6 % loss in CO2 permeability over 63 days); the aged membranes had a CO2 permeance of 2504 GPU and ideal selectivity values of 37.2 and 23.8 for CO2 /N2 and CO2 /CH4 , respectively.

7.
Nano Lett ; 23(23): 10971-10982, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37991895

RESUMEN

Nanoparticles have emerged as potential transporters of drugs targeting Alzheimer's disease (AD), but their design should consider the blood-brain barrier (BBB) integrity and neuroinflammation of the AD brain. This study presents that aging is a significant factor for the brain localization and retention of nanoparticles, which we engineered to bind with reactive astrocytes and activated microglia. We assembled 200 nm-diameter particles using a block copolymer of poly(lactic-co-glycolic acid) (PLGA) and CD44-binding hyaluronic acid (HA). The resulting PLGA-b-HA nanoparticles displayed increased binding to CD44-expressing reactive astrocytes and activated microglia. Upon intravascular injection, nanoparticles were localized to the hippocampi of both APP/PS1 AD model mice and their control littermates at 13-16 months of age due to enhanced transvascular transport through the leaky BBB. No particles were found in the hippocampi of young adult mice. These findings demonstrate the brain localization of nanoparticles due to aging-induced BBB breakdown regardless of AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/metabolismo
8.
Chem Commun (Camb) ; 57(100): 13756-13759, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34854854

RESUMEN

Finned hierarchical MOF particles (Cu(BDC) nanosheets as fins grown perpendicularly on Ni2(BDC)2(DABCO) hexagonal prisms) were synthesized on modified cellulose support. The hierarchical MOF particles exposed the open Cu(II) sites on Cu(BDC) to enable selective 1-hexene/n-hexane separation.

9.
R Soc Open Sci ; 8(10): 211086, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34703623

RESUMEN

Hierarchical zeolites have the potential to provide a breakthrough in transport limitation, which hinders pristine microporous zeolites and thus may broaden their range of applications. We have explored the use of Pd-doped hierarchical ZSM-5 zeolites for aerobic selective oxidation (selox) of cinnamyl alcohol and benzyl alcohol to their corresponding aldehydes. Hierarchical ZSM-5 with differing acidity (H-form and Na-form) were employed and compared with two microporous ZSM-5 equivalents. Characterization of the four catalysts by X-ray diffraction, nitrogen porosimetry, NH3 temperature-programmed desorption, CO chemisorption, high-resolution scanning transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray absorption spectroscopy allowed investigation of their porosity, acidity, as well as Pd active sites. The incorporation of complementary mesoporosity, within the hierarchical zeolites, enhances both active site dispersion and PdO active site generation. Likewise, alcohol conversion was also improved with the presence of secondary mesoporosity, while strong Brønsted acidity, present solely within the H-form systems, negatively impacted overall selectivity through undesirable self-etherification. Therefore, tuning support porosity and acidity alongside active site dispersion is paramount for optimal aldehyde production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...