Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; 374: 114698, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38266764

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease that causes the degeneration of motor neurons in the motor cortex and spinal cord. Patients with ALS experience muscle weakness and atrophy in the limbs which eventually leads to paralysis and death. NAD+ is critical for energy metabolism, such as glycolysis and oxidative phosphorylation, but is also involved in non-metabolic cellular reactions. In the current study, we determined whether the supplementation of nicotinamide mononucleotide (NMN), an NAD+ precursor, in the diet had beneficial impacts on disease progression using a SOD1G93A mouse model of ALS. We found that the ALS mice fed with an NMN-supplemented diet (ALS+NMN mice) had modestly extended lifespan and exhibited delayed motor dysfunction. Using electrophysiology, we studied the effect of NMN on synaptic transmission at neuromuscular junctions (NMJs) in symptomatic of ALS mice (18 weeks old). ALS+NMN mice had larger end-plate potential (EPP) amplitudes and maintained better responses than ALS mice, and also had restored EPP facilitation. While quantal content was not affected by NMN, miniature EPP (mEPP) amplitude and frequency were elevated in ALS+NMN mice. NMN supplementation in diet also improved NMJ morphology, innervation, mitochondrial structure, and reduced reactive astrogliosis in the ventral horn of the lumbar spinal cord. Overall, our results indicate that dietary consumption of NMN can slow motor impairment, enhance NMJ function and improve healthspan of ALS mice.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Ratones , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Enfermedades Neurodegenerativas/metabolismo , NAD/metabolismo , Unión Neuromuscular/metabolismo , Suplementos Dietéticos , Ratones Transgénicos , Modelos Animales de Enfermedad , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
2.
Nano Lett ; 22(9): 3668-3677, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35439419

RESUMEN

The real-time monitoring of neurochemical release in vivo plays a critical role in understanding the biochemical process of the complex nervous system. Current technologies for such applications, including microdialysis and fast-scan cyclic voltammetry, suffer from limited spatiotemporal resolution or poor selectivity. Here, we report a soft implantable aptamer-graphene microtransistor probe for real-time monitoring of neurochemical release. As a demonstration, we show the monitoring of dopamine with nearly cellular-scale spatial resolution, high selectivity (dopamine sensor >19-fold over norepinephrine), and picomolar sensitivity, simultaneously. Systematic benchtop evaluations, ex vivo experiments, and in vivo studies in mice models highlight the key features and demonstrate the capability of capturing the dopamine release dynamics evoked by pharmacological stimulation, suggesting the potential applications in basic neuroscience studies and studying neurological disease-related processes. The developed system can be easily adapted for monitoring other neurochemicals and drugs by simply replacing the aptamers functionalized on the graphene microtransistors.


Asunto(s)
Dopamina , Grafito , Animales , Ratones , Norepinefrina , Oligonucleótidos
3.
Membranes (Basel) ; 12(2)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35207041

RESUMEN

Acid-sensing ion channels (ASICs) are proton-gated cation channels and key mediators of responses to neuronal injury. ASICs exhibit unique patterns of distribution in the brain, with high expression in neurons and low expression in glial cells. While there has been a lot of focus on ASIC in neurons, less is known about the roles of ASICs in glial cells. ASIC1a is expressed in astrocytes and might contribute to synaptic transmission and long-term potentiation. In oligodendrocytes, constitutive activation of ASIC1a participates in demyelinating diseases. ASIC1a, ASIC2a, and ASIC3, found in microglial cells, could mediate the inflammatory response. Under pathological conditions, ASIC dysregulation in glial cells can contribute to disease states. For example, activation of astrocytic ASIC1a may worsen neurodegeneration and glioma staging, activation of microglial ASIC1a and ASIC2a may perpetuate ischemia and inflammation, while oligodendrocytic ASIC1a might be involved in multiple sclerosis. This review concentrates on the unique ASIC components in each of the glial cells and integrates these glial-specific ASICs with their physiological and pathological conditions. Such knowledge provides promising evidence for targeting of ASICs in individual glial cells as a therapeutic strategy for a diverse range of conditions.

4.
Sci Adv ; 8(8): eabn2277, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35196090

RESUMEN

Extensive studies in both animals and humans have demonstrated that high molecular weight neurochemicals, such as neuropeptides and other polypeptide neurochemicals, play critical roles in various neurological disorders. Despite many attempts, existing methods are constrained by detecting neuropeptide release in small animal models during behavior tasks, which leaves the molecular mechanisms underlying many neurological and psychological disorders unresolved. Here, we report a wireless, programmable push-pull microsystem for membrane-free neurochemical sampling with cellular spatial resolution in freely moving animals. In vitro studies demonstrate the sampling of various neurochemicals with high recovery (>80%). Open-field tests reveal that the device implantation does not affect the natural behavior of mice. The probe successfully captures the pharmacologically evoked release of neuropeptide Y in freely moving mice. This wireless push-pull microsystem creates opportunities for neuroscientists to understand where, when, and how the release of neuropeptides modulates diverse behavioral outputs of the brain.

5.
J Vis Exp ; (179)2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-35129169

RESUMEN

Mitochondrial Ca2+ plays a critical role in controlling cytosolic Ca2+ buffering, energy metabolism, and cellular signal transduction. Overloading of mitochondrial Ca2+ contributes to various pathological conditions, including neurodegeneration and apoptotic cell death in neurological diseases. Here we present a cell-type specific and mitochondria targeting molecular approach for mitochondrial Ca2+ imaging in astrocytes and neurons in vitro and in vivo. We constructed DNA plasmids encoding mitochondria-targeting genetically encoded Ca2+ indicators (GECIs) GCaMP5G or GCaMP6s (GCaMP5G/6s) with astrocyte- and neuron-specific promoters gfaABC1D and CaMKII and mitochondria-targeting sequence (mito-). For in vitro mitochondrial Ca2+ imaging, the plasmids were transfected in cultured astrocytes and neurons to express GCaMP5G/6s. For in vivo mitochondrial Ca2+ imaging, adeno-associated viral vectors (AAVs) were prepared and injected into the mouse brains to express GCaMP5G/6s in mitochondria in astrocytes and neurons. Our approach provides a useful means to image mitochondrial Ca2+ dynamics in astrocytes and neurons to study the relationship between cytosolic and mitochondrial Ca2+ signaling, as well as astrocyte-neuron interactions.


Asunto(s)
Astrocitos , Calcio , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Células Cultivadas , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Neuronas/metabolismo
7.
Adv Neurobiol ; 26: 115-138, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34888833

RESUMEN

Stroke is the leading cause of human death and disability. After a stroke, many patients may have some physical disability, including difficulties in moving, speaking, and seeing, but patients may also exhibit changes in mood manifested by depression, anxiety, and cognitive changes which we call post-stroke mood disorders (PSMDs). Astrocytes are the most diverse and numerous glial cell type in the central nervous system (CNS). They provide structural, nutritional, and metabolic support to neurons and regulate synaptic activity under normal conditions. Astrocytes are also critically involved in focal ischemic stroke (FIS). They undergo many changes after FIS. These changes may affect acute neuronal death and brain damage as well as brain recovery and PSMD in the chronic phase after FIS. Studies using postmortem brain specimens and animal models of FIS suggest that astrocytes/reactive astrocytes are involved in PSMD. This chapter provides an overview of recent advances in the molecular base of astrocyte in PSMD. As astrocytes exhibit high plasticity after FIS, we suggest that targeting local astrocytes may be a promising strategy for PSMD therapy.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Animales , Astrocitos , Humanos , Trastornos del Humor , Neuronas
8.
Genes (Basel) ; 12(11)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34828382

RESUMEN

Neurodegenerative diseases result in the progressive deterioration of the nervous system, with motor and cognitive impairments being the two most observable problems. Motor dysfunction could be caused by motor neuron diseases (MNDs) characterized by the loss of motor neurons, such as amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease, or other neurodegenerative diseases with the destruction of brain areas that affect movement, such as Parkinson's disease and Huntington's disease. Nicotinamide adenine dinucleotide (NAD+) is one of the most abundant metabolites in the human body and is involved with numerous cellular processes, including energy metabolism, circadian clock, and DNA repair. NAD+ can be reversibly oxidized-reduced or directly consumed by NAD+-dependent proteins. NAD+ is synthesized in cells via three different paths: the de novo, Preiss-Handler, or NAD+ salvage pathways, with the salvage pathway being the primary producer of NAD+ in mammalian cells. NAD+ metabolism is being investigated for a role in the development of neurodegenerative diseases. In this review, we discuss cellular NAD+ homeostasis, looking at NAD+ biosynthesis and consumption, with a focus on the NAD+ salvage pathway. Then, we examine the research, including human clinical trials, focused on the involvement of NAD+ in MNDs and other neurodegenerative diseases with motor dysfunction.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Enfermedad de Charcot-Marie-Tooth/metabolismo , NAD/biosíntesis , Esclerosis Amiotrófica Lateral/genética , Enfermedad de Charcot-Marie-Tooth/genética , Relojes Circadianos , Ensayos Clínicos como Asunto , Reparación del ADN , Metabolismo Energético , Humanos
9.
Neurochem Res ; 46(10): 2638-2650, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33591443

RESUMEN

Focal ischemic stroke (FIS) is a leading cause of human debilitation and death. Following the onset of a FIS, the brain experiences a series of spatiotemporal changes which are exemplified in different pathological processes. One prominent feature of FIS is the development of reactive astrogliosis and glial scar formation in the peri-infarct region (PIR). During the subacute phase, astrocytes in PIR are activated, referred to as reactive astrocytes (RAs), exhibit changes in morphology (hypotrophy), show an increased proliferation capacity, and altered gene expression profile, a phenomenon known as reactive astrogliosis. Subsequently, the morphology of RAs remains stable, and proliferation starts to decline together with the formation of glial scars. Reactive astrogliosis and glial scar formation eventually cause substantial tissue remodeling and changes in permanent structure around the PIR. Glial cell line-derived neurotrophic factor (GDNF) was originally isolated from a rat glioma cell-line and regarded as a potent survival neurotrophic factor. Under normal conditions, GDNF is expressed in neurons but is upregulated in RAs after FIS. This review briefly describes properties of GDNF, its receptor-mediated signaling pathways, as well as recent studies regarding the role of RAs-derived GDNF in neuronal protection and brain recovery. These results provide evidence suggesting an important role of RA-derived GDNF in intrinsic brain repair and recovery after FIS, and thus targeting GDNF in RAs may be effective for stroke therapy.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Neuronas/metabolismo , Neuroprotección/fisiología , Recuperación de la Función/fisiología , Transducción de Señal/fisiología
10.
J Cereb Blood Flow Metab ; 41(8): 2116-2131, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33563078

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD+ salvage pathway. Our previous study demonstrated that deletion of NAMPT gene in projection neurons using Thy1-NAMPT-/- conditional knockout (cKO) mice causes neuronal degeneration, muscle atrophy, neuromuscular junction abnormalities, paralysis and eventually death. Here we conducted a combined metabolomic and transcriptional profiling study in vivo in an attempt to further investigate the mechanism of neuronal degeneration at metabolite and mRNA levels after NAMPT deletion. Here using steady-state metabolomics, we demonstrate that deletion of NAMPT causes a significant decrease of NAD+ metabolome and bioenergetics, a buildup of metabolic intermediates upstream of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in glycolysis, and an increase of oxidative stress. RNA-seq shows that NAMPT deletion leads to the increase of mRNA levels of enzymes in NAD metabolism, in particular PARP family of NAD+ consumption enzymes, as well as glycolytic genes Glut1, Hk2 and PFBFK3 before GAPDH. GO, KEGG and GSEA analyses show the activations of apoptosis, inflammation and immune responsive pathways and the inhibition of neuronal/synaptic function in the cKO mice. The current study suggests that increased oxidative stress, apoptosis and neuroinflammation contribute to neurodegeneration and mouse death as a direct consequence of bioenergetic stress after NAMPT deletion.


Asunto(s)
Muerte Celular/genética , Citocinas/genética , Metabolismo Energético/genética , Neuronas/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Estrés Oxidativo/genética , Adenosina Trifosfato/metabolismo , Animales , Citocinas/deficiencia , Regulación hacia Abajo , Femenino , Glucólisis , Masculino , Metabolómica , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/deficiencia , Análisis de Componente Principal , Regulación hacia Arriba
12.
Proc Natl Acad Sci U S A ; 117(31): 18292-18301, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32661158

RESUMEN

Pencils and papers are ubiquitous in our society and have been widely used for writing and drawing, because they are easy to use, low-cost, widely accessible, and disposable. However, their applications in emerging skin-interfaced health monitoring and interventions are still not well explored. Herein, we report a variety of pencil-paper-based on-skin electronic devices, including biophysical (temperature, biopotential) sensors, sweat biochemical (pH, uric acid, glucose) sensors, thermal stimulators, and humidity energy harvesters. Among these devices, pencil-drawn graphite patterns (or combined with other compounds) serve as conductive traces and sensing electrodes, and office-copy papers work as flexible supporting substrates. The enabled devices can perform real-time, continuous, and high-fidelity monitoring of a range of vital biophysical and biochemical signals from human bodies, including skin temperatures, electrocardiograms, electromyograms, alpha, beta, and theta rhythms, instantaneous heart rates, respiratory rates, and sweat pH, uric acid, and glucose, as well as deliver programmed thermal stimulations. Notably, the qualities of recorded signals are comparable to those measured with conventional methods. Moreover, humidity energy harvesters are prepared by creating a gradient distribution of oxygen-containing groups on office-copy papers between pencil-drawn electrodes. One single-unit device (0.87 cm2) can generate a sustained voltage of up to 480 mV for over 2 h from ambient humidity. Furthermore, a self-powered on-skin iontophoretic transdermal drug-delivery system is developed as an on-skin chemical intervention example. In addition, pencil-paper-based antennas, two-dimensional (2D) and three-dimensional (3D) circuits with light-emitting diodes (LEDs) and batteries, reconfigurable assembly and biodegradable electronics (based on water-soluble papers) are explored.


Asunto(s)
Electrónica/instrumentación , Grafito , Monitoreo Fisiológico/instrumentación , Piel , Dispositivos Electrónicos Vestibles , Suministros de Energía Eléctrica , Electrodos , Diseño de Equipo , Humanos , Papel
13.
Glia ; 68(11): 2395-2414, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32497340

RESUMEN

Focal ischemic stroke (FIS) is a leading cause of human death. Glial scar formation largely caused by reactive astrogliosis in peri-infarct region (PIR) is the hallmark of FIS. Glial cell-derived neurotrophic factor (GDNF) was originally isolated from a rat glioma cell-line supernatant and is a potent survival neurotrophic factor. Here, using CreERT2 -LoxP recombination technology, we generated inducible and astrocyte-specific GDNF conditional knockout (cKO), that is, GLAST-GDNF-/- cKO mice to investigate the effect of reactive astrocytes (RAs)-derived GDNF on neuronal death, brain damage, oxidative stress and motor function recovery after photothrombosis (PT)-induced FIS. Under non-ischemic conditions, we found that adult GLAST-GDNF-/- cKO mice exhibited significant lower numbers of Brdu+, Ki67+ cells, and DCX+ cells in the dentate gyrus (DG) in hippocampus than GDNF floxed (GDNFf/f ) control (Ctrl) mice, indicating endogenous astrocytic GDNF can promote adult neurogenesis. Under ischemic conditions, GLAST-GDNF-/- cKO mice had a significant increase in infarct volume, hippocampal damage and FJB+ degenerating neurons after PT as compared with the Ctrl mice. GLAST-GDNF-/- cKO mice also had lower densities of Brdu+ and Ki67+ cells in the PIR and exhibited larger behavioral deficits than the Ctrl mice. Mechanistically, GDNF deficiency in astrocytes increased oxidative stress through the downregulation of glucose-6-phosphate dehydrogenase (G6PD) in RAs. In summary, our study indicates that RAs-derived endogenous GDNF plays important roles in reducing brain damage and promoting brain recovery after FIS through neural regeneration and suggests that promoting anti-oxidant mechanism in RAs is a potential strategy in stroke therapy.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Lesiones Encefálicas , Isquemia Encefálica/complicaciones , Bromodesoxiuridina , Modelos Animales de Enfermedad , Proteína Doblecortina , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Gliosis , Infarto , Antígeno Ki-67 , Ratones , Ratas , Accidente Cerebrovascular
14.
Sci Rep ; 10(1): 99, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919382

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) plays a critical role in energy metabolism and bioenergetic homeostasis. Most NAD+ in mammalian cells is synthesized via the NAD+ salvage pathway, where nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme, converting nicotinamide into nicotinamide mononucleotide (NMN). Using a Thy1-Nampt-/- projection neuron conditional knockout (cKO) mouse, we studied the impact of NAMPT on synaptic vesicle cycling in the neuromuscular junction (NMJ), end-plate structure of NMJs and muscle contractility of semitendinosus muscles. Loss of NAMPT impaired synaptic vesicle endocytosis/exocytosis in the NMJs. The cKO mice also had motor endplates with significantly reduced area and thickness. When the cKO mice were treated with NMN, vesicle endocytosis/exocytosis was improved and endplate morphology was restored. Electrical stimulation induced muscle contraction was significantly impacted in the cKO mice in a frequency dependent manner. The cKO mice were unresponsive to high frequency stimulation (100 Hz), while the NMN-treated cKO mice responded similarly to the control mice. Transmission electron microscopy (TEM) revealed sarcomere misalignment and changes to mitochondrial morphology in the cKO mice, with NMN treatment restoring sarcomere alignment but not mitochondrial morphology. This study demonstrates that neuronal NAMPT is important for pre-/post-synaptic NMJ function, and maintaining skeletal muscular function and structure.


Asunto(s)
Citocinas/fisiología , Mitocondrias/patología , Músculo Esquelético/patología , Unión Neuromuscular/patología , Neuronas/patología , Nicotinamida Fosforribosiltransferasa/fisiología , Transmisión Sináptica , Animales , Femenino , Homeostasis , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Neuronas/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(1): 205-213, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31871158

RESUMEN

In addition to mechanical compliance, achieving the full potential of on-skin electronics needs the introduction of other features. For example, substantial progress has been achieved in creating biodegradable, self-healing, or breathable, on-skin electronics. However, the research of making on-skin electronics with passive-cooling capabilities, which can reduce energy consumption and improve user comfort, is still rare. Herein, we report the development of multifunctional on-skin electronics, which can passively cool human bodies without needing any energy consumption. This property is inherited from multiscale porous polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) supporting substrates. The multiscale pores of SEBS substrates, with characteristic sizes ranging from around 0.2 to 7 µm, can effectively backscatter sunlight to minimize heat absorption but are too small to reflect human-body midinfrared radiation to retain heat dissipation, thereby delivering around 6 °C cooling effects under a solar intensity of 840 W⋅m-2 Other desired properties, rooted in multiscale porous SEBS substrates, include high breathability and outstanding waterproofing. The proof-of-concept bioelectronic devices include electrophysiological sensors, temperature sensors, hydration sensors, pressure sensors, and electrical stimulators, which are made via spray printing of silver nanowires on multiscale porous SEBS substrates. The devices show comparable electrical performances with conventional, rigid, nonporous ones. Also, their applications in cuffless blood pressure measurement, interactive virtual reality, and human-machine interface are demonstrated. Notably, the enabled on-skin devices are dissolvable in several organic solvents and can be recycled to reduce electronic waste and manufacturing cost. Such on-skin electronics can serve as the basis for future multifunctional smart textiles with passive-cooling functionalities.

16.
J Neurochem ; 151(6): 732-748, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31553812

RESUMEN

NAD+ is a cofactor required for glycolysis, tricarboxylic acid cycle, and complex I enzymatic reaction. In mammalian cells, NAD+ is predominantly synthesized through the salvage pathway, where nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme. Previously, we demonstrated that NAMPT exerts a neuroprotective effect in ischemia through the suppression of mitochondrial dysfunction. Mammalian cells maintain distinct NAD+ pools in the cytosol, mitochondria, and nuclei. However, it is unknown whether mitochondria have an intact machinery for NAD+ salvage, and if so, whether it plays a dominant role in bioenergetics, mitochondrial function, and neuronal protection after ischemia. Here, using mouse primary cortical neuron and cortical tissue preparations, and multiple technologies including cytosolic and mitochondrial subfractionation, viral over-expression of transgenes, molecular biology, and confocal microscopy, we provided compelling evidence that neuronal mitochondria possess an intact machinery of NAMPT-mediated NAD+ salvage pathway, and that NAMPT and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3) are localized in the mitochondrial matrix. By knocking down NMNAT1-3 and NAMPT with siRNA, we found that NMNAT3 has a larger effect on basal and ATP production-related mitochondrial respiration than NMNAT1-2 in primary cultured neurons, while NMNAT1-2 have a larger effect on glycolytic flux than NMNAT3. Using an oxygen glucose deprivation model, we found that mitochondrial, cytoplasmic, and non-subcellular compartmental over-expressions of NAMPT have a comparable effect on neuronal protection and suppression of apoptosis-inducing factor translocation. The current study provides novel insights into the roles of subcellular compartmental NAD+ salvage pathways in NAD+ homeostasis, bioenergetics, and neuronal protection in ischemic conditions.


Asunto(s)
Citocinas/metabolismo , Metabolismo Energético/fisiología , NAD/metabolismo , Neuronas/metabolismo , Neuroprotección/fisiología , Nicotinamida Fosforribosiltransferasa/metabolismo , Transducción de Señal/fisiología , Animales , Hipoxia de la Célula/fisiología , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fracciones Subcelulares/metabolismo
17.
Curr Protoc Neurosci ; 82: 2.29.1-2.29.11, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29357111

RESUMEN

This unit provides a step-by-step protocol for constructing cell type- and mitochondria-targeted GCaMP genetically encoded Ca2+ indicators (GECIs) for mitochondrial Ca2+ imaging in astrocytes. Mitochondrial Ca2+ plays a critical role in controlling cytosolic Ca2+ buffering, energy metabolism, and cellular signal transduction. Mitochondrial Ca2+ overload contributes to various pathological conditions, including neurodegeneration and apoptotic cell death in neurological diseases. Live-cell mitochondrial Ca2+ imaging is an important approach to understand mitochondrial Ca2+ dynamics and thus cell physiology and pathology. We implement astrocyte-specific mitochondrial targeting of GCaMP5G/6s (mito-GCaMP5G/6s). By loading X-Rhod-1 into astrocytes, we can simultaneously image mitochondrial and cytosolic Ca2+ signals. This protocol provides a novel approach to image mitochondrial Ca2+ dynamics as well as Ca2+ interplay between the endoplasmic reticulum and mitochondria. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Astrocitos/metabolismo , Señalización del Calcio , Retículo Endoplásmico/metabolismo , Colorantes Fluorescentes , Mitocondrias/metabolismo , Animales , Células Cultivadas , Ratones Endogámicos C57BL , Rodaminas
18.
Cell Rep ; 20(9): 2184-2200, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28854367

RESUMEN

Intracellular nicotinamide phosphoribosyltransferase (iNAMPT) is the rate-limiting enzyme of the mammalian NAD+ biosynthesis salvage pathway. Using inducible and conditional knockout (cKO) mice, we show that Nampt gene deletion in adult projection neurons leads to a progressive loss of body weight, hypothermia, motor neuron (MN) degeneration, motor function deficits, paralysis, and death. Nampt deletion causes mitochondrial dysfunction, muscle fiber type conversion, and atrophy, as well as defective synaptic function at neuromuscular junctions (NMJs). When treated with nicotinamide mononucleotide (NMN), Nampt cKO mice exhibit reduced motor function deficits and prolonged lifespan. iNAMPT protein levels are significantly reduced in the spinal cord of amyotrophic lateral sclerosis (ALS) patients, indicating the involvement of NAMPT in ALS pathology. Our findings reveal that neuronal NAMPT plays an essential role in mitochondrial bioenergetics, motor function, and survival. Our study suggests that the NAMPT-mediated NAD+ biosynthesis pathway is a potential therapeutic target for degenerative MN diseases.


Asunto(s)
Envejecimiento/patología , Eliminación de Gen , Corteza Motora/fisiopatología , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/patología , Neuronas/enzimología , Neuronas/patología , Nicotinamida Fosforribosiltransferasa/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/patología , Animales , Conducta Animal , Muerte Celular , Gliosis/complicaciones , Gliosis/patología , Gliosis/fisiopatología , Homeostasis , Humanos , Ratones Noqueados , Mitocondrias/metabolismo , Actividad Motora , Corteza Motora/patología , Atrofia Muscular/patología , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/fisiopatología , Unión Neuromuscular/enzimología , Unión Neuromuscular/patología , Mononucleótido de Nicotinamida/uso terapéutico , Transmisión Sináptica
19.
Sci Rep ; 6: 32416, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27576732

RESUMEN

We previously demonstrated that Pre-B-cell colony-enhancing factor (PBEF), also known as nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in mammalian NAD(+) biosynthesis pathway, plays a brain and neuronal protective role in ischemic stroke. In this study, we further investigated the mechanism of its neuroprotective effect after ischemia in the primary cultured mouse cortical neurons. Using apoptotic cell death assay, fluorescent imaging, molecular biology, mitochondrial biogenesis measurements and Western blotting analysis, our results show that the overexpression of PBEF in neurons can significantly promote neuronal survival, reduce the translocation of apoptosis inducing factor (AIF) from mitochondria to nuclei and inhibit the activation of capase-3 after glutamate-induced excitotoxicity. We further found that the overexpression of PBEF can suppress glutamate-induced mitochondrial fragmentation, the loss of mitochondrial DNA (mtDNA) content and the reduction of PGC-1 and NRF-1 expressions. Furthermore, these beneficial effects by PBEF are dependent on its enzymatic activity of NAD(+) synthesis. In summary, our study demonstrated that PBEF ameliorates ischemia-induced neuronal death through inhibiting caspase-dependent and independent apoptotic signaling pathways and suppressing mitochondrial damage and dysfunction. Our study provides novel insights into the mechanisms underlying the neuroprotective effect of PBEF, and helps to identify potential targets for ischemic stroke therapy.


Asunto(s)
Isquemia Encefálica/genética , Citocinas/genética , Neuronas/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Accidente Cerebrovascular/genética , Animales , Apoptosis/genética , Factor Inductor de la Apoptosis/genética , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Citocinas/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/patología , Neuronas/patología , Neuroprotección/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Cultivo Primario de Células , Transducción de Señal/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
20.
Neurobiol Dis ; 85: 234-244, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25982835

RESUMEN

Astrocytes are specialized and the most abundant cell type in the central nervous system (CNS). They play important roles in the physiology of the brain. Astrocytes are also critically involved in many CNS disorders including focal ischemic stroke, the leading cause of brain injury and death in patients. One of the prominent pathological features of a focal ischemic stroke is reactive astrogliosis and glial scar formation. Reactive astrogliosis is accompanied with changes in morphology, proliferation, and gene expression in the reactive astrocytes. This study provides an overview of the most recent advances in astrocytic Ca(2+) signaling, spatial, and temporal dynamics of the morphology and proliferation of reactive astrocytes as well as signaling pathways involved in the reactive astrogliosis after ischemic stroke based on results from experimental studies performed in various animal models. This review also discusses the therapeutic potential of reactive astrocytes in focal ischemic stroke. As reactive astrocytes exhibit high plasticity, we suggest that modulation of local reactive astrocytes is a promising strategy for cell-based stroke therapy.


Asunto(s)
Astrocitos/fisiología , Isquemia Encefálica/fisiopatología , Isquemia Encefálica/terapia , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...