Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(17): e2220982120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37075072

RESUMEN

Cell-free DNA (cfDNA) fragmentation is nonrandom, at least partially mediated by various DNA nucleases, forming characteristic cfDNA end motifs. However, there is a paucity of tools for deciphering the relative contributions of cfDNA cleavage patterns related to underlying fragmentation factors. In this study, through non-negative matrix factorization algorithm, we used 256 5' 4-mer end motifs to identify distinct types of cfDNA cleavage patterns, referred to as "founder" end-motif profiles (F-profiles). F-profiles were associated with different DNA nucleases based on whether such patterns were disrupted in nuclease-knockout mouse models. Contributions of individual F-profiles in a cfDNA sample could be determined by deconvolutional analysis. We analyzed 93 murine cfDNA samples of different nuclease-deficient mice and identified six types of F-profiles. F-profiles I, II, and III were linked to deoxyribonuclease 1 like 3 (DNASE1L3), deoxyribonuclease 1 (DNASE1), and DNA fragmentation factor subunit beta (DFFB), respectively. We revealed that 42.9% of plasma cfDNA molecules were attributed to DNASE1L3-mediated fragmentation, whereas 43.4% of urinary cfDNA molecules involved DNASE1-mediated fragmentation. We further demonstrated that the relative contributions of F-profiles were useful to inform pathological states, such as autoimmune disorders and cancer. Among the six F-profiles, the use of F-profile I could inform the human patients with systemic lupus erythematosus. F-profile VI could be used to detect individuals with hepatocellular carcinoma, with an area under the receiver operating characteristic curve of 0.97. F-profile VI was more prominent in patients with nasopharyngeal carcinoma undergoing chemoradiotherapy. We proposed that this profile might be related to oxidative stress.


Asunto(s)
Ácidos Nucleicos Libres de Células , Humanos , Ratones , Animales , Ácidos Nucleicos Libres de Células/genética , Desoxirribonucleasas/genética , Ratones Noqueados , Endonucleasas/genética , Fragmentación del ADN , Endodesoxirribonucleasas/genética
2.
Clin Chem ; 68(7): 917-926, 2022 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-35587043

RESUMEN

BACKGROUND: Jagged ends of plasma DNA are a recently recognized class of fragmentomic markers for cell-free DNA, reflecting the activity of nucleases. A number of recent studies have also highlighted the importance of jagged ends in the context of pregnancy and oncology. However, knowledge regarding the generation of jagged ends is incomplete. METHODS: Jaggedness of plasma DNA was analyzed based on Jag-seq, which utilized the differential methylation signals introduced by the DNA end-repair process. We investigated the jagged ends in plasma DNA using mouse models by deleting the deoxyribonuclease 1 (Dnase1), DNA fragmentation factor subunit beta (Dffb), or deoxyribonuclease 1 like 3 (Dnase1l3) gene. RESULTS: Aberrations in the profile of plasma DNA jagged ends correlated with the type of nuclease that had been genetically deleted, depending on nucleosomal structures. The deletion of Dnase1l3 led to a significant reduction of jaggedness for those plasma DNA molecules involving more than 1 nucleosome (e.g., size ranges 240-290 bp, 330-380 bp, and 420-470 bp). However, less significant effects of Dnase1 and Dffb deletions were observed regarding different sizes of DNA fragments. Interestingly, the aberration in plasma DNA jagged ends related to multinucleosomes was observed in human subjects with familial systemic lupus erythematosus with Dnase1l3 deficiency and human subjects with sporadic systemic lupus erythematosus. CONCLUSIONS: Detailed understanding of the relationship between nuclease and plasma DNA jaggedness has opened up avenues for biomarker development.


Asunto(s)
Ácidos Nucleicos Libres de Células , Lupus Eritematoso Sistémico , Animales , Biomarcadores , Ácidos Nucleicos Libres de Células/genética , ADN/genética , Desoxirribonucleasas/genética , Endodesoxirribonucleasas/genética , Femenino , Humanos , Lupus Eritematoso Sistémico/genética , Ratones , Nucleosomas/genética , Embarazo
3.
Diagnostics (Basel) ; 12(4)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35454026

RESUMEN

Cell-free DNA (cfDNA) in bodily fluids has rapidly transformed the development of noninvasive prenatal testing, cancer liquid biopsy, and transplantation monitoring. Plasma cfDNA consists of a mixture of molecules originating from various bodily tissues. The study of the fragmentation patterns of cfDNA, also referred to as 'fragmentomics', is now an actively pursued area of biomarker research. Clues that cfDNA fragmentation patterns might carry information concerning the tissue of origin of cfDNA molecules have come from works demonstrating that circulating fetal, tumor-derived, and transplanted liver-derived cfDNA molecules have a shorter size distribution than the background mainly of hematopoietic origin. More recently, an improved understanding of cfDNA fragmentation has provided many emerging fragmentomic markers, including fragment sizes, preferred ends, end motifs, single-stranded jagged ends, and nucleosomal footprints. The intrinsic biological link between activities of various DNA nucleases and characteristic fragmentations has been demonstrated. In this review, we focus on the biological properties of cell-free DNA unveiled recently and their potential clinical applications.

4.
NPJ Genom Med ; 7(1): 14, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197474

RESUMEN

Single-stranded ends of double-stranded DNA (jagged ends) are more abundant in urinary DNA than in plasma DNA. However, the lengths of jagged ends in urinary DNA remained undetermined, as a previous method used for urinary DNA jagged end sequencing analysis (Jag-seq) relied on unmethylation at CpG sites, limiting the resolution. Here, we performed high-resolution Jag-seq analysis using methylation at non-CpG cytosine sites, allowing determination of exact length of jagged ends. The urinary DNA bore longer jagged ends (~26-nt) than plasma DNA (~17-nt). The jagged end length distribution displayed 10-nt periodicities in urinary DNA, which were much less observable in plasma DNA. Amplitude of the 10-nt periodicities increased in patients with renal cell carcinoma. Heparin treatment of urine diminished the 10-nt periodicities. The urinary DNA jagged ends often extended into nucleosomal cores, suggesting potential interactions with histones. This study has thus advanced our knowledge of jagged ends in urine DNA.

5.
Clin Chem ; 67(4): 621-630, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33604652

RESUMEN

BACKGROUND: Double-stranded DNA in plasma is known to carry single-stranded ends, called jagged ends. Plasma DNA jagged ends are biomarkers for pathophysiologic states such as pregnancy and cancer. It remains unknown whether urinary cell-free DNA (cfDNA) molecules have jagged ends. METHODS: Jagged ends of cfDNA were detected by incorporating unmethylated cytosines during a DNA end-repair process, followed by bisulfite sequencing. Incorporation of unmethylated cytosines during the repair of the jagged ends lowered the apparent methylation levels measured by bisulfite sequencing and were used to calculate a jagged end index. This approach is called jagged end analysis by sequencing. RESULTS: The jagged end index of urinary cfDNA was higher than that of plasma DNA. The jagged end index profile of plasma DNA displayed several strongly oscillating major peaks at intervals of approximately 165 bp (i.e., nucleosome size) and weakly oscillating minor peaks with periodicities of approximately 10 bp. In contrast, the urinary DNA jagged end index profile showed weakly oscillating major peaks but strongly oscillating minor peaks. The jagged end index was generally higher in nucleosomal linker DNA regions. Patients with bladder cancer (n = 46) had lower jagged end indexed of urinary DNA than participants without bladder cancer (n = 39). The area under the curve for differentiating between patients with and without bladder cancer was 0.83. CONCLUSIONS: Jagged ends represent a property of urinary cfDNA. The generation of jagged ends might be related to nucleosomal structures, with enrichment in linker DNA regions. Jagged ends of urinary DNA could potentially serve as a new biomarker for bladder cancer detection.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias de la Vejiga Urinaria , Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/genética , ADN/genética , Metilación de ADN , Estudios de Factibilidad , Femenino , Humanos , Nucleosomas , Embarazo , Análisis de Secuencia de ADN , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética
6.
Genome Res ; 30(8): 1144-1153, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32801148

RESUMEN

Cell-free DNA in plasma has been used for noninvasive prenatal testing and cancer liquid biopsy. The physical properties of cell-free DNA fragments in plasma, such as fragment sizes and ends, have attracted much recent interest, leading to the emerging field of cell-free DNA fragmentomics. However, one aspect of plasma DNA fragmentomics as to whether double-stranded plasma molecules might carry single-stranded ends, termed a jagged end in this study, remains underexplored. We have developed two approaches for investigating the presence of jagged ends in a plasma DNA pool. These approaches utilized DNA end repair to introduce differential methylation signals between the original sequence and the jagged ends, depending on whether unmethylated or methylated cytosines were used in the DNA end-repair procedure. The majority of plasma DNA molecules (87.8%) were found to bear jagged ends. The jaggedness varied according to plasma DNA fragment sizes and appeared to be in association with nucleosomal patterns. In the plasma of pregnant women, the jaggedness of fetal DNA molecules was higher than that of the maternal counterparts. The jaggedness of plasma DNA correlated with the fetal DNA fraction. Similarly, in the plasma of cancer patients, tumor-derived DNA molecules in patients with hepatocellular carcinoma showed an elevated jaggedness compared with nontumoral DNA. In mouse models, knocking out of the Dnase1 gene reduced jaggedness, whereas knocking out of the Dnase1l3 gene enhanced jaggedness. Hence, plasma DNA jagged ends represent an intrinsic property of plasma DNA and provide a link between nuclease activities and the fragmentation of plasma DNA.


Asunto(s)
Ácidos Nucleicos Libres de Células/sangre , Fragmentación del ADN , Metilación de ADN/genética , ADN/sangre , ADN/genética , Animales , Carcinoma Hepatocelular/genética , Ácidos Nucleicos Libres de Células/genética , Reparación del ADN por Unión de Extremidades/genética , Endodesoxirribonucleasas/genética , Femenino , Humanos , Neoplasias Hepáticas/genética , Ratones , Ratones Noqueados , Nucleosomas/genética , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...