Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.026
Filtrar
1.
Cancer Manag Res ; 16: 421-429, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736588

RESUMEN

Background: The advantages of the dissecting the metastatic lymph nodes posterior to the right recurrent laryngeal nerve (LN-prRLN) remain a great deal of controversies in papillary thyroid carcinoma (PTC) patients without clinical evidence. The purpose of our retrospective research was to investigate the predictive factors of the LN-prRLN in cN0 PTC patients. Methods and Materials: Altogether 251 consecutive cN0 PTC participants accepted unilateral or bilateral thyroidectomy accompanied with LN-prRLN dissection between June 2020 and May 2023 were included in the research. Then, univariate and multivariate logical regression analysis were conducted to analyze the relationship between the LN-prRLN and these predictive factors, and a predictive model was also developed. Surgical complications of LN-prRLN dissection were also presented. Results: The rate of LN-prRLN was 17.9% (45/251) in cN0 PTC patients after the analysis of postoperative histology. The age <55 years, multifocality, microcalcification, and BRAFV600E mutation were identified to be predictive factors of LN-prRLN in cN0 PTC patients. The risk score for LN-prRLN was calculated: risk score = 1.192 × (if age <55 years) + 0.808 × (if multifocality) + 1.196 × (if microcalcification in nodule) + 0.918 × (if BRAFV600E mutation in nodule). The rates of the transient hypoparathyroidism and hoarseness were 1.2% (3/251) and 2.0% (5/251), respectively. Conclusion: The age <55 years, multifocality, microcalcification, and BRAFV600E mutation are independent predictors of the LN-prRLN in cN0 PTC patients. An effective predictive model was established for predicting the LN-prRLN in cN0 PTC patients, with the aim to better guide the surgical treatment of PTC. A thorough inspection of the lateral compartment is recommended in PTC patients with risk factors. The multicenter research with long-term follow-up should be carried out to ascertain the optimal surgical approach for patients with PTC.

2.
JACC CardioOncol ; 6(2): 251-263, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38774001

RESUMEN

Background: The use of an artificial intelligence electrocardiography (AI-ECG) algorithm has demonstrated its reliability in predicting the risk of atrial fibrillation (AF) within the general population. Objectives: This study aimed to determine the effectiveness of the AI-ECG score in identifying patients with chronic lymphocytic leukemia (CLL) who are at high risk of developing AF. Methods: We estimated the probability of AF based on AI-ECG among patients with CLL extracted from the Mayo Clinic CLL database. Additionally, we computed the Mayo Clinic CLL AF risk score and determined its ability to predict AF. Results: Among 754 newly diagnosed patients with CLL, 71.4% were male (median age = 69 years). The median baseline AI-ECG score was 0.02 (range = 0-0.93), with a value ≥0.1 indicating high risk. Over a median follow-up of 5.8 years, the estimated 10-year cumulative risk of AF was 26.1%. Patients with an AI-ECG score of ≥0.1 had a significantly higher risk of AF (HR: 3.9; 95% CI: 2.6-5.7; P < 0.001). This heightened risk remained significant (HR: 2.5; 95% CI: 1.6-3.9; P < 0.001) even after adjusting for the Mayo CLL AF risk score, heart failure, chronic kidney disease, and CLL therapy. In a second cohort of CLL patients treated with a Bruton tyrosine kinase inhibitor (n = 220), a pretreatment AI-ECG score ≥0.1 showed a nonsignificant increase in the risk of AF (HR: 1.7; 95% CI: 0.8-3.6; P = 0.19). Conclusions: An AI-ECG algorithm, in conjunction with the Mayo CLL AF risk score, can predict the risk of AF in patients with newly diagnosed CLL. Additional studies are needed to determine the role of AI-ECG in predicting AF risk in CLL patients treated with a Bruton tyrosine kinase inhibitor.

3.
Chemosphere ; : 142262, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38714252

RESUMEN

Industrialization has caused a significant global issue with cadmium (Cd) pollution. In this study, Biochar (Bc), generated through initial pyrolysis of rice straw, underwent thorough mixing with magnetized bentonite clay, followed by activation with KOH and subsequent pyrolysis. Consequently, a magnetized bentonite modified rice straw biochar (Fe3O4@B-Bc) was successfully synthesized for effective treatment and remediation of this problem. Fe3O4@B-Bc not only overcomes the challenges associated with the difficult separation of individual bentonite or biochar from water, but also exhibited a maximum adsorption capacity of Cd(II) up to 241.52 mg g-1. The characterization of Fe3O4@B-Bc revealed that its surface was rich in C, O and Fe functional groups, which enable efficient adsorption. The quantitative calculation of the contribution to the adsorption mechanism indicates that cation exchange and physical adsorption accounted for 65.87% of the total adsorption capacity. In conclusion, Fe3O4@B-Bc can be considered a low-cost and recyclable green adsorbent, with broad potential for treating cadmium-polluted water.

4.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38715407

RESUMEN

Facial palsy can result in a serious complication known as facial synkinesis, causing both physical and psychological harm to the patients. There is growing evidence that patients with facial synkinesis have brain abnormalities, but the brain mechanisms and underlying imaging biomarkers remain unclear. Here, we employed functional magnetic resonance imaging (fMRI) to investigate brain function in 31 unilateral post facial palsy synkinesis patients and 25 healthy controls during different facial expression movements and at rest. Combining surface-based mass-univariate analysis and multivariate pattern analysis, we identified diffused activation and intrinsic connection patterns in the primary motor cortex and the somatosensory cortex on the patient's affected side. Further, we classified post facial palsy synkinesis patients from healthy subjects with favorable accuracy using the support vector machine based on both task-related and resting-state functional magnetic resonance imaging data. Together, these findings indicate the potential of the identified functional reorganizations to serve as neuroimaging biomarkers for facial synkinesis diagnosis.


Asunto(s)
Parálisis Facial , Imagen por Resonancia Magnética , Sincinesia , Humanos , Imagen por Resonancia Magnética/métodos , Parálisis Facial/fisiopatología , Parálisis Facial/diagnóstico por imagen , Parálisis Facial/complicaciones , Masculino , Femenino , Sincinesia/fisiopatología , Adulto , Persona de Mediana Edad , Adulto Joven , Expresión Facial , Biomarcadores , Corteza Motora/fisiopatología , Corteza Motora/diagnóstico por imagen , Mapeo Encefálico , Corteza Somatosensorial/diagnóstico por imagen , Corteza Somatosensorial/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Máquina de Vectores de Soporte
5.
Cell Death Dis ; 15(5): 341, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755133

RESUMEN

The liver is a major metastatic site (organ) for gastrointestinal cancers (such as colorectal, gastric, and pancreatic cancers) as well as non-gastrointestinal cancers (such as lung, breast, and melanoma cancers). Due to the innate anatomical position of the liver, the apoptosis of T cells in the liver, the unique metabolic regulation of hepatocytes and other potential mechanisms, the liver tends to form an immunosuppressive microenvironment and subsequently form a pre-metastatic niche (PMN), which can promote metastasis and colonization by various tumor cells(TCs). As a result, the critical role of immunoresponse in liver based metastasis has become increasingly appreciated. T cells, a centrally important member of adaptive immune response, play a significant role in liver based metastases and clarifying the different roles of the various T cells subsets is important to guide future clinical treatment. In this review, we first introduce the predisposing factors and related mechanisms of liver metastasis (LM) before introducing the PMN and its transition to LM. Finally, we detail the role of different subsets of T cells in LM and advances in the management of LM in order to identify potential therapeutic targets for patients with LM.


Asunto(s)
Neoplasias Hepáticas , Linfocitos T , Humanos , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Linfocitos T/inmunología , Animales , Microambiente Tumoral/inmunología
6.
Nat Commun ; 15(1): 4176, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755176

RESUMEN

SETD3 is an essential host factor for the replication of a variety of enteroviruses that specifically interacts with viral protease 2A. However, the interaction between SETD3 and the 2A protease has not been fully characterized. Here, we use X-ray crystallography and cryo-electron microscopy to determine the structures of SETD3 complexed with the 2A protease of EV71 to 3.5 Å and 3.1 Å resolution, respectively. We find that the 2A protease occupies the V-shaped central cleft of SETD3 through two discrete sites. The relative positions of the two proteins vary in the crystal and cryo-EM structures, showing dynamic binding. A biolayer interferometry assay shows that the EV71 2A protease outcompetes actin for SETD3 binding. We identify key 2A residues involved in SETD3 binding and demonstrate that 2A's ability to bind SETD3 correlates with EV71 production in cells. Coimmunoprecipitation experiments in EV71 infected and 2A expressing cells indicate that 2A interferes with the SETD3-actin complex, and the disruption of this complex reduces enterovirus replication. Together, these results reveal the molecular mechanism underlying the interplay between SETD3, actin, and viral 2A during virus replication.


Asunto(s)
Actinas , Microscopía por Crioelectrón , Enterovirus Humano A , Unión Proteica , Humanos , Actinas/metabolismo , Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Cristalografía por Rayos X , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/química , Replicación Viral , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/química , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/metabolismo , Modelos Moleculares , Histona Metiltransferasas
7.
J Org Chem ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567628

RESUMEN

We herein present an electrochemical method for the dehydrogenative cross-coupling of N-(4-hydroxyphenyl)-sulfonamides and 2-naphthols. This transformation provides a direct and scalable approach to a wide range of C1-symmetric 2,2'-bis(arenol)s with moderate to high yields under mild conditions. Preliminary attempts with the asymmetric variant of this reaction were also performed with ≤55% ee for the synthesis of 2,2'-bis(arenol)s. Control experiments were conducted to propose a plausible mechanism for the reaction.

8.
Small Methods ; : e2400007, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573877

RESUMEN

The development of non-precious hydrogen oxidation reaction (HOR) catalysts is a major challenge for the commercialization of Pt-free fuel cells. Herein, a temperature-induced phase hybridization method is reported that greatly improves the catalytic performance of NiCu alloy for the HOR. The migration of W atoms hybridizes the interface of tungsten oxide (WOx) and tungsten carbide (WC) at the onset reduction temperature of WOx, leading to a greatly weakened H binding energy and an optimized OH binding energy, which endows NiCuW/WOx-WC@WC with favorable stability and CO resistance during HOR. The hybridization catalysts deliver a high mass activity of 29.37 mA mg-1 Ni and reach a peak power of 298 mW.cm-2 in H2-O2 anion exchange membrane fuel cells (AEMFCs).

10.
Asian J Androl ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38624195

RESUMEN

ABSTRACT: This study compared different doublet and triplet therapies for efficacy and safety in metastatic hormone-sensitive prostate cancer (mHSPC). PubMed, EMBASE, and the Cochrane Library were comprehensively searched for eligible randomized controlled trials (RCTs) published from inception to October 2023. Interventions included abiraterone, apalutamide, enzalutamide, docetaxel, darolutamide, and androgen deprivation therapy (ADT), either as doublet or triplet therapies. The outcomes examined were overall survival (OS), progression-free survival (PFS), castration-resistant prostate cancer (CRPC)-free survival, time to symptomatic skeletal event (SSE), and toxicity. The surface under the cumulative ranking curve (SUCRA) was determined to identify the preferred treatments. Ten RCTs were included. The combination of darolutamide, docetaxel, and ADT had the highest SUCRA of 84.3 for OS, followed by combined abiraterone, docetaxel, and ADT (SUCRA = 71.6). The highest SUCRAs for PFS were observed for triplet therapies (abiraterone, docetaxel, and ADT [SUCRA = 74.9], followed by enzalutamide, docetaxel, and ADT [SUCRA = 74.3]) and other androgen receptor axis-targeted therapy-based doublet therapies (SUCRAs: 26.5-59.3). Darolutamide, docetaxel, and ADT had the highest SUCRAs, i.e., 80.8 and 84.0 regarding CRPC-free survival and time to SSE, respectively. Regarding Grade >3 adverse events (AEs), the SUCRAs of triplet therapies (SUCRAs: 14.8-31.5) were similar to that of docetaxel and ADT (SUCRA = 39.5). Three studies had a low risk of bias in all categories; the remaining studies had at least an unclear risk of bias in at least one category. Triplet therapy demonstrated potentially enhanced effectiveness than doublet therapy in mHSPC, with acceptable safety concerns. Darolutamide might be the optimal option for triplet therapy in combination with docetaxel and ADT.

11.
Biosens Bioelectron ; 257: 116313, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688229

RESUMEN

The emergence and rapid spread of Mpox (formerly monkeypox) have caused significant societal challenges. Adequate and appropriate diagnostics procedures are an urgent necessity. Herein, we discover a pair of aptamers through the systematic evolution of ligands by exponential enrichment (SELEX) that exhibit high affinity and bind to different sites towards the A29 protein of the Mpox virus. Subsequently, we propose a facile, sensitive, convenient CRISPR/Cas12a-mediated aptasensor for detecting the A29 antigen. The procedure employs the bivalent aptamers recognition, which induces the formation of a proximity switch probe and initiates subsequent cascade strand displacement reactions, then triggers CRISPR/Cas12a DNA trans-cleavage to achieve the sensitive detection of Mpox. Our method enables selective and ultrasensitive evaluation of the A29 protein within the range of 1 ng mL-1 to 1 µg mL-1, with a limit of detection (LOD) at 0.28 ng mL-1. Moreover, spiked A29 protein recovery exceeds 96.9%, while the detection activity remains above 91.9% after six months of storage at 4 °C. This aptasensor provides a novel avenue for exploring clinical diagnosis in cases involving Mpox as facilitating development in various analyte sensors.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Sistemas CRISPR-Cas , Límite de Detección , Técnica SELEX de Producción de Aptámeros , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Humanos , Antígenos Virales/análisis , Proteínas Asociadas a CRISPR/química , Proteínas Bacterianas , Endodesoxirribonucleasas
12.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38612768

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant disease with a low 5-year overall survival rate. It is the third-leading cause of cancer-related deaths in the United States. The lack of robust therapeutics, absence of effective biomarkers for early detection, and aggressive nature of the tumor contribute to the high mortality rate of PDAC. Notably, the outcomes of recent immunotherapy and targeted therapy against PDAC remain unsatisfactory, indicating the need for novel therapeutic strategies. One of the newly described molecular features of PDAC is the altered expression of protein arginine methyltransferases (PRMTs). PRMTs are a group of enzymes known to methylate arginine residues in both histone and non-histone proteins, thereby mediating cellular homeostasis in biological systems. Some of the PRMT enzymes are known to be overexpressed in PDAC that promotes tumor progression and chemo-resistance via regulating gene transcription, cellular metabolic processes, RNA metabolism, and epithelial mesenchymal transition (EMT). Small-molecule inhibitors of PRMTs are currently under clinical trials and can potentially become a new generation of anti-cancer drugs. This review aims to provide an overview of the current understanding of PRMTs in PDAC, focusing on their pathological roles and their potential as new therapeutic targets.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteína-Arginina N-Metiltransferasas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Inmunoterapia , Arginina
13.
Exp Mol Med ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689083

RESUMEN

Genotoxic therapy triggers reactive oxygen species (ROS) production and oxidative tissue injury. S-nitrosylation is a selective and reversible posttranslational modification of protein thiols by nitric oxide (NO), and 5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for NO synthesis. However, the mechanism by which BH4 affects protein S-nitrosylation and ROS generation has not been determined. Here, we showed that ionizing radiation disrupted the structural integrity of BH4 and downregulated GTP cyclohydrolase I (GCH1), which is the rate-limiting enzyme in BH4 biosynthesis, resulting in deficiency in overall protein S-nitrosylation. GCH1-mediated BH4 synthesis significantly reduced radiation-induced ROS production and fueled the global protein S-nitrosylation that was disrupted by radiation. Likewise, GCH1 overexpression or the administration of exogenous BH4 protected against radiation-induced oxidative injury in vitro and in vivo. Conditional pulmonary Gch1 knockout in mice (Gch1fl/fl; Sftpa1-Cre+/- mice) aggravated lung injury following irradiation, whereas Gch1 knock-in mice (Gch1lsl/lsl; Sftpa1-Cre+/- mice) exhibited attenuated radiation-induced pulmonary toxicity. Mechanistically, lactate dehydrogenase (LDHA) mediated ROS generation downstream of the BH4/NO axis, as determined by iodoacetyl tandem mass tag (iodoTMT)-based protein quantification. Notably, S-nitrosylation of LDHA at Cys163 and Cys293 was regulated by BH4 availability and could restrict ROS generation. The loss of S-nitrosylation in LDHA after irradiation increased radiosensitivity. Overall, the results of the present study showed that GCH1-mediated BH4 biosynthesis played a key role in the ROS cascade and radiosensitivity through LDHA S-nitrosylation, identifying novel therapeutic strategies for the treatment of radiation-induced lung injury.

14.
Chemistry ; : e202400894, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494436

RESUMEN

We report here on the facile synthesis of amino- and alkoxy-λ3-iodanes supported by a benziodoxole (BX) template and their use as arynophiles. The amino- and alkoxy-BX derivatives can be readily synthesized by reacting the respective amines or alcohols with chlorobenziodoxole in the presence of a suitable base. Unlike previously known nitrogen- and oxygen-bound iodane compounds, which have primarily been employed as electrophilic group transfer agents or oxidants, the present amino- and alkoxy-BX reagents manifest themselves as nucleophilic amino and alkoxy transfer agents toward arynes. This reactivity leads to the aryne insertion into the N-I(III) or O-I(III) bond to afford ortho-amino- and ortho-alkoxy-arylbenziodoxoles, iodane compounds nontrivial to procure by existing methods. The BX group in these insertion products exhibits excellent leaving group ability, enabling diverse downstream transformations.

15.
ACS Appl Mater Interfaces ; 16(13): 15879-15892, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38529805

RESUMEN

Tendon regeneration is greatly influenced by the oxidant and the inflammatory microenvironment. Persistent inflammation during the tendon repair can cause matrix degradation, tendon adhesion, and excessive accumulation of reactive oxygen species (ROS), while excessive ROS affect extracellular matrix remodeling and tendon integration. Herein, we used tannic acid (TA) to modify a decellularized tendon slice (DTS) to fabricate a functional scaffold (DTS-TA) with antioxidant and anti-inflammatory properties for tendon repair. The characterizations and cytocompatibility of the scaffolds were examined in vitro. The antioxidant and anti-inflammatory activities of the scaffold were evaluated in vitro and further studied in vivo using a subcutaneous implantation model. It was found that the modified DTS combined with TA via hydrogen bonds and covalent bonds, and the hydrophilicity, thermal stability, biodegradability, and mechanical characteristics of the scaffold were significantly improved. Afterward, the results demonstrated that DTS-TA could effectively reduce inflammation by increasing the M2/M1 macrophage ratio and interleukin-4 (IL-4) expression, decreasing the secretion of interleukin-6 (IL-6) and interleukin-1ß (IL-1ß), as well as scavenging excessive ROS in vitro and in vivo. In summary, DTS modified with TA provides a potential versatile scaffold for tendon regeneration.


Asunto(s)
Antioxidantes , Polifenoles , Andamios del Tejido , Humanos , Andamios del Tejido/química , Antioxidantes/farmacología , Especies Reactivas de Oxígeno , Tendones , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Regeneración
16.
Water Res ; 255: 121488, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38513371

RESUMEN

Waste activated sludge (WAS) is a significant phosphorus (P) repository, and there is a growing interest in P recovery from WAS. Typically, the commercial technology for treating WAS involves thermal hydrolysis pretreatment (THP) coupled with anaerobic digestion (AD). However, there is ongoing debate regarding the transformation and distribution of P throughout this process. To address this, a long-term THP-AD process was operated in this study to comprehensively investigate P transformation and distribution. The results revealed that a substantial biodegradation of dissolved organic nitrogen (DON) raised the pH of the digestate to 8.3 during the AD process. This increased pH facilitated the dissolution of Al, leading to a reduction of 6.92 mg/L of NaOH-P. Simultaneously, sulfate reduction contributed to a decrease of 11.04 mg/L of Bipy-P in the solid. However, the reduction of Bipy-P and NaOH-P in the solid did not result in an improved P release to the supernatant. Conversely, a decrease of 23.60 mg/L P in the aqueous phase was observed after anaerobic digestion. The disappeared P was primarily precipitated with Mg and Ca, driven by the increased pH, and it contributed to the increase of HCl-P in the solid from 107.80 to 144.52 mg/L. These findings were further confirmed by results obtained from scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and solid-state 31P nuclear magnetic resonance (NMR) spectroscopy. This study provides valuable insights into the mechanisms of P transformation during THP-AD process that is nearly opposite from conventional AD system.

17.
EMBO J ; 43(8): 1499-1518, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528181

RESUMEN

The intestinal pathogen Salmonella enterica rapidly enters the bloodstream after the invasion of intestinal epithelial cells, but how Salmonella breaks through the gut-vascular barrier is largely unknown. Here, we report that Salmonella enters the bloodstream through intestinal CX3CR1+ macrophages during early infection. Mechanistically, Salmonella induces the migration/invasion properties of macrophages in a manner dependent on host cell actin and on the pathogen effector SteC. SteC recruits host myosin light chain protein Myl12a and phosphorylates its Ser19 and Thr20 residues. Myl12a phosphorylation results in actin rearrangement, and enhanced migration and invasion of macrophages. SteC is able to utilize a wide range of NTPs other than ATP to phosphorylate Myl12a. We further solved the crystal structure of SteC, which suggests an atypical dimerization-mediated catalytic mechanism. Finally, in vivo data show that SteC-mediated cytoskeleton manipulation is crucial for Salmonella breaching the gut vascular barrier and spreading to target organs.


Asunto(s)
Cadenas Ligeras de Miosina , Salmonella enterica , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/metabolismo , Actinas/metabolismo , Células Epiteliales/metabolismo , Macrófagos/metabolismo
18.
Blood Adv ; 8(10): 2342-2350, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38537065

RESUMEN

ABSTRACT: Patients with chronic lymphocytic leukemia (CLL) who develop Richter transformation (RT) have a poor prognosis when treated with chemoimmunotherapy regimens used for de novo diffuse large B-cell lymphoma. Venetoclax, a BCL2 inhibitor, has single-agent efficacy in patients with RT and is potentially synergistic with chemoimmunotherapy. In this multicenter, retrospective study, we evaluated 62 patients with RT who received venetoclax-based treatment outside of a clinical trial, in combination with a Bruton tyrosine kinase inhibitor (BTKi; n=28), rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone (R-CHOP) (n=13), or intensive chemoimmunotherapy other than R-CHOP (n=21). The best overall and complete response rates were 36%/25%, 54%/46%, and 52%/38%, respectively. The median progression-free and overall survival estimates for the same treatment groups were 4.9/14.3 months, 14.9 months/not reached, and 3.3/9 months, respectively. CLL with del(17p) was associated with a lower complete response rate in the total cohort (odds ratio [OR] 0.15; 95% confidence interval [CI] 0.04-0.6; p=0.01) and venetoclax-naïve subgroup (OR 0.13; 95%CI 0.02-0.66; p=0.01). TP53 mutated CLL was associated with a lower complete response rate (OR 0.15; 95%CI 0.03-0.74; p=0.02) and shorter progression-free survival (hazard ratio 3.1; 95%CI 1.21-7.95; p=0.02) only in venetoclax-naïve subgroup. No other clinical or baseline characteristics, including prior venetoclax treatment for CLL, showed statistically significant association with outcomes. Grade 3-4 neutropenia and thrombocytopenia events were most frequent with intensive chemoimmunotherapy + venetoclax; grade 3-4 infection rates were similar across treatment groups. In this difficult-to-treat RT patient population, venetoclax-based combination regimens achieved high response rates, with durable remission and survival observed in a subset of patients.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Compuestos Bicíclicos Heterocíclicos con Puentes , Leucemia Linfocítica Crónica de Células B , Sulfonamidas , Humanos , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Sulfonamidas/uso terapéutico , Sulfonamidas/administración & dosificación , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/mortalidad , Anciano , Femenino , Masculino , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Anciano de 80 o más Años , Estudios Retrospectivos , Adulto , Resultado del Tratamiento , Ciclofosfamida/uso terapéutico , Ciclofosfamida/administración & dosificación , Rituximab/uso terapéutico , Rituximab/administración & dosificación , Doxorrubicina/uso terapéutico , Doxorrubicina/administración & dosificación , Vincristina/uso terapéutico
19.
Bioresour Technol ; 399: 130588, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490460

RESUMEN

In this work, a novel biofilm-based fermentation of Beauveria bassiana was employed to convert R-2- phenoxypropionic acid (R-PPA) to R-2-(4-hydroxyphenoxy) propionic acid (R-HPPA). The biofilm culture model of Beauveria bassiana produced a significantly higher R-HPPA titer than the traditional submerged fermentation method. Mannitol dosage, tryptone dosage, and initial pH were the factors that played a significant role in biofilm formation and R-HPPA synthesis. Under the optimal conditions, the maximum R-HPPA titer and productivity approached 22.2 g/L and 3.2 g/(L·d), respectively. A two-stage bioreactor combining agitation and static incubation was developed to further increase R-HPPA production. The process was optimized to achieve 100 % conversion of R-PPA, with a maximum R-HPPA titer of 50 g/L and productivity of 3.8 g/(L·d). This newly developed biofilm-based two-stage fermentation process provides a promising strategy for the industrial production of R-HPPA and related hydroxylated aromatic compounds.


Asunto(s)
Beauveria , Fermentación , Beauveria/química , Reactores Biológicos , Propionatos
20.
Cell Mol Biol Lett ; 29(1): 34, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459454

RESUMEN

Persistent infection with high-risk human papillomavirus (HR-HPV) is the primary and initiating factor for cervical cancer. With over 200 identified HPV types, including 14 high-risk types that integrate into the host cervical epithelial cell DNA, early determination of HPV infection type is crucial for effective risk stratification and management. Presently, on-site immediate testing during the HPV screening stage, known as Point of Care Testing (POCT), remains immature, severely limiting the scope and scenarios of HPV screening. This study, guided by the genomic sequence patterns of HPV, established a multiplex recombinase polymerase amplification (RPA) technology based on the concept of "universal primers." This approach achieved the multiple amplification of RPA, coupled with the CRISPR/Cas12a system serving as a medium for signal amplification and conversion. The study successfully constructed a POCT combined detection system, denoted as H-MRC12a (HPV-Multiple RPA-CRISPR/Cas12a), and applied it to high-risk HPV typing detection. The system accomplished the typing detection of six high-risk HPV types (16, 18, 31, 33, 35, and 45) can be completed within 40 min, and the entire process, from sample loading to result interpretation, can be accomplished within 45 min, with a detection depth reaching 1 copy/µL for each high-risk type. Validation of the H-MRC12a detection system's reproducibility and specificity was further conducted through QPCR on 34 clinical samples. Additionally, this study explored and optimized the multiplex RPA amplification system and CRISPR system at the molecular mechanism level. Furthermore, the primer design strategy developed in this study offers the potential to enhance the throughput of H-MRC12a detection while ensuring sensitivity, providing a novel research avenue for high-throughput detection in Point-of-Care molecular pathogen studies.


Asunto(s)
Infecciones por Papillomavirus , Recombinasas , Humanos , Sistemas CRISPR-Cas/genética , Infecciones por Papillomavirus/diagnóstico , Reproducibilidad de los Resultados , Pruebas en el Punto de Atención , Virus del Papiloma Humano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA