RESUMEN
Although the intervention for triple-negative breast cancer (TNBC) patients has improved and survival time has increased, the combination of immune checkpoint inhibitors(ICIs) and PARP inhibitors (Poly ADP-Ribose Polymerase inhibitors, PARPis) is still controversial. Previous studies revealed that the combined use of ICIs and PARPis led to increased antitumor activity. However, most of these combined regimens are nonrandomized controlled trials with small sample sizes. The purpose of this meta-analysis was to evaluate the efficacy and safety of ICIs combined with PARPis in patients with advanced or metastatic TNBC. The PubMed, Embase, Cochrane Library and Web of Science databases were systematically searched. The results including the objective remission rate (ORR), disease control rate (DCR), progression-free survival (PFS) and adverse events (AEs), were subjected to further analysis. Four studies involving 110 subjects were included in this meta-analysis. The combined ORR and DCR were 23.6% and 53.6%, respectively; while the ORR and DCR of BRCAmut patients were 38.1% and 71.4%, respectively. The median PFS of the patients was 4.29 months. As for safety, the most common AEs were nausea (49.0%), anemia (44.3%) and fatigue (40.6%). Most of them were grade 1 or 2, and the incidence of adverse events ≥ III was obviously low. Except for anemia, the incidence of AEs ≥ III was < 10%. This meta-analysis revealed that the combination of ICIs and PARPis has good efficacy and safety for advanced or metastatic TNBC patients.
RESUMEN
Early life stress alters gut microbiota and increases the risk of neuropsychiatric disorders, including social deficits and anxiety, in the host. However, the role of gut commensal bacteria in early life stress-induced neurobehavioral abnormalities remains unclear. Using the maternally separated (MS) mice, our research has unveiled a novel aspect of this complex relationship. We discovered that the reduced levels of amino acid transporters in the intestine of MS mice led to low glutamine (Gln) levels in the blood and synaptic dysfunction in the medial prefrontal cortex (mPFC). Abnormally low blood Gln levels limit the brain's availability of Gln, which is required for presynaptic glutamate (Glu) and γ-aminobutyric acid (GABA) replenishment. Furthermore, MS resulted in gut microbiota dysbiosis characterized by a reduction in the relative abundance of Lactobacillus reuteri (L. reuteri). Notably, supplementation with L. reuteri ameliorates neurobehavioral abnormalities in MS mice by increasing intestinal amino acid transport and restoring synaptic transmission in the mPFC. In conclusion, our findings on the role of L. reuteri in regulating intestinal amino acid transport and buffering early life stress-induced behavioral abnormalities provide a novel insight into the microbiota-gut-brain signaling basis for emotional behaviors.
Asunto(s)
Ansiedad , Microbioma Gastrointestinal , Estrés Psicológico , Animales , Microbioma Gastrointestinal/fisiología , Ratones , Ansiedad/microbiología , Ansiedad/metabolismo , Estrés Psicológico/microbiología , Estrés Psicológico/metabolismo , Aminoácidos/metabolismo , Masculino , Ratones Endogámicos C57BL , Sistemas de Transporte de Aminoácidos/metabolismo , Corteza Prefrontal/metabolismo , Conducta Animal , Disbiosis/microbiología , Privación Materna , Glutamina/metabolismo , Eje Cerebro-Intestino/fisiología , Transmisión Sináptica , Femenino , Ácido Glutámico/metabolismoRESUMEN
BACKGROUND: To explore whether nobiletin has a protective effect on high-fat diet (HFD)-induced enteric nerve injury and its underlying mechanism. METHODS: An obesity model was induced by a HFD. Nobiletin (100 mg/kg and 200 mg/kg) and vehicle were administered by gastric gavage for 4 weeks. Lee's index, body weight, OGTT and intestinal propulsion assays were performed before sacrifice. After sampling, lipids were detected using Bodipy 493/503; lipid peroxidation was detected using MDA and SOD kits and the expression of PGP 9.5, Trem2, GFAP, ß-tubulin 3, Bax, Bcl2, Nestin, P75 NTR, SOX10 and EDU was detected using immunofluorescence. The GDNF, p-AKT, AKT, p-FOXO3a, FOXO3a and P21 proteins were detected using western blotting. The relative mRNA expression levels of NOS2 were detected via qPCR. Primary enteric neural stem cells (ENSCs) were cultured. After ENSCs were treated with palmitic acid (PA) and nobiletin, CCK-8 and caspase-3/7 activity assays were performed to evaluate proliferation and apoptosis. RESULTS: HFD consumption caused colon lipid accumulation and peroxidation, induced enteric nerve damage and caused intestinal motor dysfunction. However, nobiletin reduced lipid accumulation and peroxidation in the colon; promoted Trem2, ß-tubulin 3, Nestin, P75NTR, SOX10 and Bcl2 expression; inhibited Bax and GFAP expression; reduced NOS2 mRNA transcription; and regulated the GDNF/AKT/FOXO3a/P21 pathway. Nobiletin also promoted PA-induced impairment of ENSCs. CONCLUSIONS: Nobiletin restored HFD-induced enteric nerve injury, which may be associated with inhibiting enteric nerve apoptosis, promoting enteric nerve survival and regulating the GDNF/AKT/FOXO3a/P21 pathway.
Asunto(s)
Dieta Alta en Grasa , Sistema Nervioso Entérico , Flavonas , Proteína Forkhead Box O3 , Factor Neurotrófico Derivado de la Línea Celular Glial , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Proteína Forkhead Box O3/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Dieta Alta en Grasa/efectos adversos , Transducción de Señal/efectos de los fármacos , Masculino , Flavonas/farmacología , Flavonas/uso terapéutico , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/efectos de los fármacos , Ratones , Modelos Animales de Enfermedad , Ratas , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Apoptosis/efectos de los fármacosRESUMEN
Background: Mobile phone addiction (MPA) greatly affects the biological clock and sleep quality and is emerging as a behavioral disorder. The saliva microbiota has been linked to circadian rhythms, and our previous research revealed dysrhythmic saliva metabolites in MPA subjects with sleep disorders (MPASD). In addition, acupuncture had positive effects. However, the dysbiotic saliva microbiota in MPASD patients and the restorative effects of acupuncture are unclear. Objectives: To probe the circadian dysrhythmic characteristics of the saliva microbiota and acupunctural restoration in MPASD patients. Methods: MPASD patients and healthy volunteers were recruited by the Mobile Phone Addiction Tendency Scale (MPATS) and the Pittsburgh Sleep Quality Index (PSQI). Saliva samples were collected every 4 h for 72 h. After saliva sampling, six MPDSD subjects (group M) were acupuncturally treated (group T), and subsequent saliva sampling was conducted posttreatment. Finally, all the samples were subjected to 16S rRNA gene sequencing and bioinformatic analysis. Results: Significantly increased MPATS and PSQI scores were observed in MPDSD patients (p< 0.01), but these scores decreased (p<0.001) after acupuncture intervention. Compared with those in healthy controls, the diversity and structure of the saliva microbiota in MPASD patients were markedly disrupted. Six genera with circadian rhythms were detected in all groups, including Sulfurovum, Peptostreptococcus, Porphyromonas and Prevotella. There were five genera with circadian rhythmicity in healthy people, of which the rhythmicities of the genera Rothia and Lautropia disappeared in MPASD patients but effectively resumed after acupuncture intervention. Conclusions: This work revealed dysrhythmic salivary microbes in MPASD patients, and acupuncture, as a potential intervention, could be effective in mitigating this ever-rising behavioral epidemic.
RESUMEN
Background: Salpingitis obstructive infertility (SOI) refers to infertility caused by abnormal conditions such as tubal adhesion and blockage caused by acute and chronic salpingitis. SOI has a serious impact on women's physical and mental health and family harmony, and it is a clinical problem that needs to be solved urgently.
Objective: The purpose of the present study was to explore the potential pharmacological mechanisms of the Yinjia tablets (Yin Jia Pian, YJP) on tubal inflammation.
Methods: Networks of YJP-associated targets and tubal inflammation-related genes were constructed through the STRING database. Potential targets and pathway enrichment analysis related to the therapeutic efficacy of YJP were identified using Cytoscape and Database for Annotation, Visualization, and Integrated Discovery (metascape). E. coli was used to establish a rat model of tubal inflammation and to validate the predictions of network pharmacology and the therapeutic efficacy of YJP. H&E staining was used to observe the pathological changes in fallopian tubes. TEM observation of the ultrastructure of the fallopian tubes. ELISA was used to detect the changes of IL-6 and TNF-α in fallopian tubes. Immunohistochemistry was used to detect the expression of ESR1. The changes of Bcl-2, ERK1/2, p-ERK1/2, MEK, p-MEK, EGFR, and p-EGFR were detected by western blot.
Results: Through database analysis, it was found that YJP shared 105 identical targets with the disease. Network pharmacology analysis showed that IL-6, TNF, and EGFR belong to the top 5 core proteins associated with salpingitis, and EGFR/MEK/ERK may be the main pathway involved. The E. coli-induced disease rat model of fallopian tube tissue showed damage, mitochondrial disruption, and increased levels of the inflammatory factors IL-6 and TNF-α. Tubal inflammatory infertility rats have increased expression of Bcl-2, p-ERK1/2, p-MEK, and p-EGFR, and decreased expression of ESR1. In vivo, experiments showed that YJP improved damage of tissue, inhibited shedding of tubal cilia, and suppressed the inflammatory response of the body. Furthermore, YJP inhibited EGFR/MEK/ERK signaling, inhibited the apoptotic protein Bcl-2, and upregulated ESR1.
Conclusion: This study revealed that YJP Reducing tubal inflammation and promoting tissue repair may be associated with inhibition of the EGFR/MEK/ERK signaling pathway.
.Asunto(s)
Medicamentos Herbarios Chinos , Infertilidad , Salpingitis , Humanos , Femenino , Ratas , Animales , Salpingitis/complicaciones , Salpingitis/metabolismo , Salpingitis/patología , Sistema de Señalización de MAP Quinasas , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Escherichia coli/metabolismo , Farmacología en Red , Infertilidad/complicaciones , Transducción de Señal , Inflamación/tratamiento farmacológico , Receptores ErbB/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismoRESUMEN
BACKGROUND: The epidermic microbiota plays crucial roles in the pathogenesis of atopic dermatitis (AD), a common inflammatory skin disease. Melatonin (MLT) has been shown to ameliorate skin damage in AD patients, yet the underlying mechanism is unclear. METHODS: Using 2,4-dinitrofluorobenzene (DNFB) to induce an AD model, MLT intervention was applied for 14 days to observe its pharmaceutical effect. Skin lesions were observed using HE staining, toluidine blue staining and electron microscopy. Dermal proinflammatory factor (IL-4 and IL-13) and intestinal barrier indices (ZO1 and Occludin) were assessed by immunohistochemistry and RT-qPCR, respectively. The dysbiotic microbiota was analyzed using 16S rRNA sequencing. RESULTS: MLT significantly improved skin lesion size; inflammatory status (mast cells, IgE, IL-4, and IL-13); and the imbalance of the epidermal microbiota in AD mice. Notably, Staphylococcus aureus is the key bacterium associated with dysbiosis of the epidermal microbiota and may be involved in the fine modulation of mast cells, IL-4, IL-13 and IgE. Correlation analysis between AD and the gut revealed that intestinal dysbiosis occurred earlier than that of the pathological structure in the gut. CONCLUSION: Melatonin reverses DNFB-induced skin damage and epidermal dysbiosis, especially in S. aureus.
Asunto(s)
Dermatitis Atópica , Melatonina , Microbiota , Enfermedades de la Piel , Humanos , Ratones , Animales , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dinitrofluorobenceno/toxicidad , Melatonina/farmacología , Interleucina-13 , Staphylococcus aureus , Interleucina-4/farmacología , ARN Ribosómico 16S/genética , Disbiosis/patología , Piel , Enfermedades de la Piel/patología , Inmunoglobulina ERESUMEN
In recent years, the role of nobiletin in neuronal disorders has received extensive attention. However, the study of nobiletin in the peripheral nervous system is limited. Nobiletin, as a compound with high fat solubility, high bioavailability and low toxicity, has been extensively studied. Accumulating scientific evidence has shown that nobiletin has a variety of biological functions in the nervous system, such as inhibiting the expression of inflammatory factors, reducing the neurotoxic response, improving the antioxidant capacity, promoting the survival of nerve cells, promoting axon growth, reducing bloodâbrain barrier permeability, reducing brain oedema, promoting cAMP response element binding protein expression, improving memory, and promoting mild depolarization of nerve cell mitochondria to improve antioxidative stress capacity. Accumulating studies have shown that nobiletin also protects enteric nervous system, spinal cord and sciatic nerve. To explore the new therapeutic potential of nobiletin in the nervous system, recent and relevant research progress is reviewed in this article. This will provide a new research idea for nobiletin in the nervous system.
Asunto(s)
Flavonas , Enfermedades del Sistema Nervioso Periférico , Humanos , Flavonas/química , Flavonas/farmacología , Antioxidantes , Estrés OxidativoRESUMEN
BACKGROUND: Previous researches have demonstrated that adaptive replanning during intensity-modulated radiation therapy (IMRT) could enhance the prognosis of patients with nasopharyngeal carcinoma (NPC). However, the delineation of replanning target volumes remains unclear. This study aimed to evaluate the feasibility of reducing target volumes through adaptive replanning during IMRT by analyzing long-term survival outcomes and failure patterns of locoregional recurrence in NPC. METHODS: This study enrolled consecutive NPC patients who received IMRT at our hospital between August 2011 and April 2018. Patients with initially diagnosed, histologically verified, non-metastatic nasopharyngeal cancer were eligible for participation in this study. The location and extent of locoregional recurrences were transferred to pretreatment planning computed tomography for dosimetry analysis. RESULTS: Among 274 patients, 100 (36.5%) received IMRT without replanning and 174 (63.5%) received IMRT with replanning. Five-year rates of locoregional recurrence-free survival (LRFS) were 90.1% (95%CI, 84.8% to 95.4%) and 80.8% (95%CI, 72.0% to 89.6%) for patients with and without replanning, P = 0.045. There were 17 locoregional recurrences in 15 patients among patients with replanning, of which 1 (5.9%) was out-field and 16 (94.1%) were in-field. Among patients without replanning, 19 patients developed locoregional recurrences, of which 1 (5.3%) was out-field, 2 (10.5%) were marginal, and 16 (84.2%) were in-field. CONCLUSIONS: In-field failure inside the high dose area was the most common locoregional recurrent pattern for non-metastatic NPC. Adapting the target volumes and modifying the radiation dose prescribed to the area of tumor reduction during IMRT was feasible and would not cause additional recurrence in the shrunken area.
Asunto(s)
Neoplasias Nasofaríngeas , Radioterapia de Intensidad Modulada , Humanos , Carcinoma Nasofaríngeo/radioterapia , Radioterapia de Intensidad Modulada/métodos , Neoplasias Nasofaríngeas/patología , Planificación de la Radioterapia Asistida por Computador/métodos , Recurrencia Local de Neoplasia/radioterapia , China/epidemiologíaRESUMEN
Maternal immune activation (MIA) resulting from viral infections during pregnancy is linked to increased rates of neurodevelopmental disorders in offspring. However, the mechanisms underlying MIA-induced neurobehavioral abnormalities remain unclear. Here, we used a poly (I:C)-induced MIA mouse model to demonstrate the presence of multiple behavioral deficits in male offspring. Through RNA sequencing (RNA-seq), we identified significant upregulation of genes involved in axonogenesis, synaptogenesis, and glutamatergic synaptic neurotransmission in the mPFC of MIA mice. Electrophysiological analyses further revealed an excitatory-inhibitory (E/I) synaptic imbalance in mPFC pyramidal neurons, leading to hyperactivity in this brain region. Cannabidiol (CBD) effectively alleviated the behavioral abnormalities observed in MIA offspring by reducing glutamatergic transmission and enhancing GABAergic neurotransmission of mPFC pyramidal neurons. Activation of GPR55 by lipid lysophosphatidylinositol (LPI), an endogenous GPR55 agonist, specifically in the mPFC of healthy animals led to MIA-associated behavioral phenotypes, which CBD could effectively reverse. Moreover, we found that a GPR55 antagonist can mimic CBD's beneficial effects, indicating that CBD's therapeutic effects are mediated via the LPI-GPR55 signaling pathway. Therefore, we identified mPFC as a primary node of a neural network that mediates MIA-induced behavioral abnormalities in offspring. Our work provides insights into the mechanisms underlying the developmental consequences of MIA and identifies CBD as a promising therapeutic approach to alleviate these effects.
RESUMEN
Acupuncture is effective intervention, particularly in nerve, endocrine diseases and immune diseases. The potential mechanisms mediating the effects of acupuncture include anti-inflammatory and oxidative stress, inhibition of cell apoptosis, and stimulation of the proliferation and differentiation of endogenous stem cells. Traditional Chinese medicine combined with stem cell transplantation have a synergistic effect in the treatment of diseases. Increasing studies have found that acupuncture can promote the proliferation, differentiation, homing and survival of exogenous stem cells. This article reviews the mechanism of acupuncture and Chinese herbs on endogenous stem cells and exogenous stem cells in the combined intervention of diverse disorders and the major problems in past 15 years, which will provide a reference for future clinical research.
Asunto(s)
Terapia por Acupuntura , Medicina Tradicional China , Trasplante de Células Madre , Diferenciación CelularRESUMEN
This study investigated the effect of electroacupuncture (EA) on the browning of white adipose tissue (WAT) via angiogenesis and its potential mechanism in obese mice. Four-week-old male C56BL/6 mice were randomly divided into a high-fat diet (HFD) and a normal chow diet (ND) group. After 12 weeks, HFD mice were randomly divided into two groups to receive or not receive EA for 3 weeks. After EA treatment, body weight, adipocyte size, serum glucose (GLU), triacylglycerol (TG), cholesterol (CHO), leptin (Lep), monocyte chemoattractant protein-1 (MCP-1), WAT browning-related genes, angiogenesis-related genes, and the PI3K/Pten/Thbs1 signaling pathway were evaluated. The results indicated that EA significantly reduced body weight, adipocyte size, and serum concentrations of GLU, TG, CHO, Lep and MCP-1 and promoted WAT browning. Angiogenesis and the PI3K/Pten/Thbs1 signaling pathway were all activated by EA intervention. The expression levels were consistent with the results of RNA-seq and confirmed via qRTPCR and WB. Our study showed that EA may activate angiogenesis via the PI3K/Pten/Thbs1 signaling pathway in WAT, thereby promoting the browning and thermogenesis of adipose tissue.
Asunto(s)
Electroacupuntura , Transducción de Señal , Animales , Masculino , Ratones , Tejido Adiposo , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Ratones Obesos , Fosfatidilinositol 3-Quinasas , Fosfohidrolasa PTEN/metabolismo , Trombospondina 1/metabolismoRESUMEN
Electroacupuncture (EA) has a weight loss effect, but the underlying molecular mechanisms of weight loss with EA have not been fully elucidated. This study aimed to investigate the modulatory effects of EA on the phenotype of hypothalamic microglia in obese mice. A total of 50 male C57BL/6J mice were used in this study. There were three groups in this experiment: The conventional diet group (Chow group), the high-fat diet group (HFD group), and the EA intervention group (HFD + EA group). EA was applied at "Tianshu (ST25)", "Guanyuan (RN4)", "Zusanli (ST36)" and "Zhongwan (RN12)" every day for 10 min. Hematoxylin and eosin (H&E) staining, immunohistochemical staining, and real-time PCR were applied in this study. The results showed that EA intervention was associated with a decrease in body weight, food intake, adipose tissue weight, and adipocyte size. At the same time, EA induced microglia to exhibit an M2 phenotype, representing reduced iNOS/TNF-α and increased Arg-1/IL-10/BDNF, which may be due to the promotion of TREM2 expression. EA also reduced microglia enrichment in the hypothalamic arcuate nucleus and declined TLR4 and IL-6, inhibiting microglia-mediated neuroinflammation. In addition, EA treatment promoted POMC expression, which may be associated with reduced food intake and weight loss in obese mice. This work provides novel evidence of EA against obesity. However, further study is necessary of EA as a therapy for obesity.
Asunto(s)
Núcleo Arqueado del Hipotálamo , Electroacupuntura , Ratones , Animales , Masculino , Núcleo Arqueado del Hipotálamo/metabolismo , Microglía/metabolismo , Ratones Obesos , Ratones Endogámicos C57BL , Hipotálamo/metabolismo , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversosRESUMEN
Introduction: A systematic review analysis was used to assess the profile of mitochondrial involvement in adipose tissue regulation and potential reagents to intervene in obesity through the mitochondrial pathway. Methods: Three databases, PubMed, Web of Science, and Embase, were searched online for literature associated with mitochondria, obesity, white adipose tissue, and brown adipose tissue published from the time of their creation until June 22, 2022, and each paper was screened. Results: 568 papers were identified, of which 134 papers met the initial selection criteria, 76 were selected after full-text review, and 6 were identified after additional searches. A full-text review of the included 82 papers was performed. Conclusion: Mitochondria play a key role in adipose tissue metabolism and energy homeostasis, including as potential therapeutic agents for obesity.
Asunto(s)
Tejido Adiposo Pardo , Obesidad , Humanos , Obesidad/terapia , Obesidad/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Metabolismo Energético , Mitocondrias/metabolismoRESUMEN
Objectives: Mobile Phone Addiction (MPA) is a novel behavioral addiction resulting in circadian rhythm disorders that severely affect mental and physical health. The purpose of this study is to detect rhythmic salivary metabolites in MPA with sleep disorder (MPASD) subjects and investigate the effects of acupuncture. Methods: Six MPASD patients and six healthy controls among the volunteers were enrolled by MPA Tendency Scale (MPATS) and Pittsburgh Sleep Quality Index (PSQI), then the salivary samples of MPASD and healthy controls were collected every 4-h for three consecutive days. Acupuncture was administered for 7 days to MPASD subjects, then saliva samples were collected again. Salivary metabolomes were analyzed with the method of LC-MS. Result: According to our investigation, 70 (57.85%) MPA patients and 56 (46.28%) MPASD patients were identified among 121 volunteers. The symptoms of the 6 MPASD subjects were significantly alleviated after acupuncture intervention. The number of rhythmic saliva metabolites dropped sharply in MPASD subjects and restored after acupuncture. Representative rhythmic saliva metabolites including melatonin, 2'-deoxyuridine, thymidine, thymidine 3',5'-cyclic monophosphate lost rhythm and restored after acupuncture, which may attribute to promising MPASD treatment and diagnosis biomarkers. The rhythmic saliva metabolites of healthy controls were mainly enriched in neuroactive ligand-receptor interaction, whereas polyketide sugar unit biosynthesis was mainly enriched in MPASD patients. Conclusion: This study revealed circadian rhythm characteristics of salivary metabolites in MPASD and that acupuncture could ameliorate MPASD by restoring part of the dysrhythmia salivary metabolites.
RESUMEN
Lack of maternal care and attention during infancy and childhood increases the likelihood of developing a range of neuropsychiatric disorders, such as social deficits, working memory impairment, and anxiety-like behaviors, in adulthood. However, the neuroregulatory signaling through which early-life stress causes behavioral and cognitive abnormalities in the offspring is largely unexplored. Here, we show that in mice, unpredictable maternal separation (MS) during the early postnatal period impairs neuronal development in the medial prefrontal cortex (mPFC) and results in long-lasting behavioral changes. Additionally, MS disrupts excitatory neurotransmission and inhibits the neuronal activity of pyramidal neurons in the mPFC. Differentially expressed gene (DEG) analysis of RNA sequencing (RNA-seq) data of mPFC showed that dopamine D1 receptor (D1R) was significantly downregulated in MS animals. Finally, we show that pharmacological activation of D1R signaling specifically in the mPFC improves neuronal excitability and rescues behavioral and cognitive dysfunction of MS mice, whereas pharmacologically inhibiting of D1R in the mPFC mimics MS-induced behavioral abnormalities in control mice. Together, our results identify D1R signaling in the mPFC, at least in part, as a potential therapeutic target for the behavioral and cognitive abnormalities caused by deprivation of maternal care in early life.
Asunto(s)
Privación Materna , Corteza Prefrontal , Ratones , Animales , Corteza Prefrontal/metabolismo , Transmisión Sináptica , Neuronas/metabolismo , Receptores de Dopamina D1/metabolismoRESUMEN
Intestinal tuft cells (TCs) are defined as chemosensory cells that can "taste" danger and induce immune responses. They play a critical role in gastrointestinal parasite invasion, inflammatory bowel diseases and high-fat diet-induced obesity. Intestinal IL-25, the unique product of TCs, is a key activator of type 2 immunity, especially to promote group 2 innate lymphoid cells (ILC2s) to secret IL-13. Then the IL-13 mainly promotes intestinal stem cell (ISCs) proliferation into TCs and goblet cells. This pathway formulates the circuit in the intestine. This paper focuses on the potential role of the intestinal TC, ILC2 and their circuit in obesity-induced intestinal damage, and discussion on further study and the potential therapeutic target in obesity.
Asunto(s)
Inmunidad Innata , Interleucina-13 , Humanos , Interleucina-13/metabolismo , Células en Penacho , Linfocitos , Intestinos , Obesidad/metabolismoRESUMEN
Objective: Diarrhea-predominant irritable bowel syndrome (IBS-D) is a recurrent and common disease featuring dysbiotic intestinal microbiota, with limited treatments. Si-Jun-Zi Decoction (SJZD), a classic Chinese prescription, has been extensively used for IBS-D. This work aimed to explore the ex vivo interactions of SJZD and IBS-D's intestinal microbiota. Methods: Five samples of intestinal microbiota collected from IBS-D volunteers and five age-matched healthy controls were recruited from the Affiliated Hospital, Chengdu University of Traditional Chinese Medicine (TCM). A representative mixture of intestinal microbiota was composed of an equal proportion of these fecal samples. To simulate the clinical interaction, this microbiota was cocultivated with SJZD at clinical dosage in an anaerobic incubator at 37°C for 35 h. Microbiota and metabolic alterations were assessed by 16S rRNA gene sequencing in the V3/V4 regions and a nontargeted metabolome platform, respectively. Results: After being cocultivated with SJZD, the dysbiotic intestine microbiota from IBS-D subjects was largely restored to those of the healthy controls. A total of 624 differentially expressed metabolites were detected by nontargeted metabolomics, of which 16 biomarkers were identified. These metabolites were then enriched into 11 pathways by KEGG, particularly those involved in neurotransmitter metabolism responses for the major symptom of IBS-D. Correlation analysis of bacterial metabolites demonstrated a synergistic pattern of neurotransmitter metabolism between Streptococcus and E. Shigella. Conclusion: SJZD rescued the dysbiotic intestinal microbiota and ameliorated the dysfunctional neurotransmitter metabolism involved in IBS-D's major symptoms.
Asunto(s)
Microbioma Gastrointestinal , Síndrome del Colon Irritable , Microbiota , Humanos , Síndrome del Colon Irritable/tratamiento farmacológico , Técnicas de Cocultivo , ARN Ribosómico 16S , Disbiosis , Prescripciones , Neurotransmisores , Intestinos , ChinaRESUMEN
Maslinic acid (MA) is a pentacyclic triterpene acid, which exists in many plants, including olive, and is highly safe for human beings. In recent years, it has been reported that MA has anti-inflammatory, antioxidant, anti-tumor, hypoglycemic, neuroprotective and other biological activities. More and more experimental data has shown that MA has a good therapeutic effect on multiple organ diseases, indicating that it has great clinical application potential. In this paper, the extraction, purification, identification and analysis, biological activity, pharmacokinetics in vivo and molecular mechanism of MA in treating various organ diseases are reviewed. It is hoped to provide a new idea for MA to treat various organ diseases.
Asunto(s)
Olea , Ácido Oleanólico , Triterpenos , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Triterpenos/uso terapéutico , Triterpenos/farmacocinéticaRESUMEN
Nobiletin can regulate lipid metabolism and protect the central nervous system. However, its role in the enteric nervous system (ENS) of obese subjects is still unclear. To investigate the ENS protective effects and mechanism of nobiletin in obese mice, male C57BL/6 mice were fed a chow diet and a high-fat diet (HFD) for 8 weeks. The identified obese and control mice were grouped and administered vehicle, nobiletin 40 mg/kg, 100 mg/kg or 200 mg/kg daily for 4 weeks. The major indexes of obesity, intestinal transit rate, PGP9.5, nNOS, TNF-α, IL-1ß, IL-6, IL-10, Bcl2 and Bax were measured. The full-length transcriptome was used to analyze differentially expressed genes (DEGs) in the colon. The results indicated that nobiletin effectively improved major indexes of obesity and bowel motility function, suppressed the expression of TNF-α, IL-1ß, IL-6 and Bax, and upregulated the expression of IL-10, Bcl2, PGP9.5 and nNOS. Based on full-length transcriptome sequencing, nobiletin regulated lipid metabolism and inflammation via the PPAR and NOD-like receptor signaling pathways. Trem2 expression was significantly reduced in obese mice. However, Trem2 expression was significantly increased after nobiletin treatment in obese mice. The enrichment analysis showed that Trem2 plays an important role in enteric neuroinflammation. In conclusion, nobiletin regulates lipid metabolism and inflammation in obese mice. Trem2 is a potential target of nobiletin for ENS protection in obese mice.
Asunto(s)
Interleucina-10 , Factor de Necrosis Tumoral alfa , Animales , Masculino , Ratones , Proteína X Asociada a bcl-2 , Dieta Alta en Grasa/efectos adversos , Inflamación/tratamiento farmacológico , Interleucina-6 , Glicoproteínas de Membrana , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Receptores Inmunológicos , Motilidad GastrointestinalRESUMEN
BACKGROUND: Although obesity is caused by different factors, individual susceptibility to obesity differs among people under the same circumstances. The microbiota in the caecum or fresh faeces and metabolites in blood or urine contribute to obesity resistance; however, the microbiota or metabolites in the small intestine have not been extensively studied. METHODS: To investigate the relationship between the microbiota or metabolites in the small intestine and susceptibility to obesity, eighty-eight male C57BL/6 mice were fed a high-fat diet (HFD) for 8 weeks to establish two models of obesity and obesity resistance. For further study, six mice were chosen from among the obesity models, and twelve mice were randomly chosen from among the obesity resistance models. After fasting plasma glucose and behavioural testing, the mice were fed in single cages for another 4 weeks to observe their weight and food intake. All mice were sacrificed at 20 weeks of age. Serum ALT, AST, HDL, LDL, TG and TC levels were measured using an automatic biochemical analyser. The microbiota and metabolites in the small intestine contents were analysed using 16 S sequencing and an ultrahigh-performance liquid chromatographic system, respectively. Transcripts in the jejunum were evaluated using full-length transcriptome sequencing and verified by qPCR. RESULTS: The results showed that HFD induced depression and anxiety behaviours and higher fasting plasma glucose, ALT, AST, HDL, LDL, TG and TC levels in the obese mice; however, these levels were improved in obese resistance mice. The correlation analysis showed that the phosphatidylcholine, TG, and phosphatidylethanolamine levels were higher in obese mice and correlated positively with intestinal microflora (Desulfovibrio and Gemella) and the Cxcl10 gene. A higher abundance of Clostridium_sensu_stricto_1 in obesity-resistant mice correlated negatively with the metabolite contents (neuromedin N and enkephalin L) and Pck1 gene expression and correlated positively with certain metabolites (5-hydroxy-L-tryptophan, cinnamyl alcohol and 1 H-indole-3-acetamide) and genes expression (Gdf15, Igfbp6 and Spp1). CONCLUSION: Clostridium_sensu_stricto_1, neuromedin N, enkephalin L, Pck1, 5-hydroxy-L-tryptophan, Cxcl10 and cinnamyl alcohol may be novel biomarkers in the small intestine for obesity/obesity resistance. These might be helpful for obesity prevention or for treating obese patients.