Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Malar J ; 22(1): 60, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36803858

RESUMEN

BACKGROUND: Rapid diagnostic tests (RDTs) are effective tools to diagnose and inform the treatment of malaria in adults and children. The recent development of a highly sensitive rapid diagnostic test (HS-RDT) for Plasmodium falciparum has prompted questions over whether it could improve the diagnosis of malaria in pregnancy and pregnancy outcomes in malaria endemic areas. METHODS: This landscape review collates studies addressing the clinical performance of the HS-RDT. Thirteen studies were identified comparing the HS-RDT and conventional RDT (co-RDT) to molecular methods to detect malaria in pregnancy. Using data from five completed studies, the association of epidemiological and pregnancy-related factors on the sensitivity of HS-RDT, and comparisons with co-RDT were investigated. The studies were conducted in 4 countries over a range of transmission intensities in largely asymptomatic women. RESULTS: Sensitivity of both RDTs varied widely (HS-RDT range 19.6 to 85.7%, co-RDT range 22.8 to 82.8% compared to molecular testing) yet HS-RDT detected individuals with similar parasite densities across all the studies including different geographies and transmission areas [geometric mean parasitaemia around 100 parasites per µL (p/µL)]. HS-RDTs were capable of detecting low-density parasitaemias and in one study detected around 30% of infections with parasite densities of 0-2 p/µL compared to the co-RDT in the same study which detected around 15%. CONCLUSION: The HS-RDT has a slightly higher analytical sensitivity to detect malaria infections in pregnancy than co-RDT but this mostly translates to only fractional and not statistically significant improvement in clinical performance by gravidity, trimester, geography or transmission intensity. The analysis presented here highlights the need for larger and more studies to evaluate incremental improvements in RDTs. The HS-RDT could be used in any situation where co-RDT are currently used for P. falciparum diagnosis, if storage conditions can be adhered to.


Asunto(s)
Malaria Falciparum , Malaria , Adulto , Embarazo , Niño , Humanos , Femenino , Plasmodium falciparum , Prueba de Diagnóstico Rápido , Sensibilidad y Especificidad , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Pruebas Diagnósticas de Rutina/métodos , Antígenos de Protozoos/análisis
2.
Malar J ; 22(1): 33, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707822

RESUMEN

BACKGROUND: Microscopic examination is commonly used for malaria diagnosis in the field. However, the lack of well-trained microscopists in malaria-endemic areas impacted the most by the disease is a severe problem. Besides, the examination process is time-consuming and prone to human error. Automated diagnostic systems based on machine learning offer great potential to overcome these problems. This study aims to evaluate Malaria Screener, a smartphone-based application for malaria diagnosis. METHODS: A total of 190 patients were recruited at two sites in rural areas near Khartoum, Sudan. The Malaria Screener mobile application was deployed to screen Giemsa-stained blood smears. Both expert microscopy and nested PCR were performed to use as reference standards. First, Malaria Screener was evaluated using the two reference standards. Then, during post-study experiments, the evaluation was repeated for a newly developed algorithm, PlasmodiumVF-Net. RESULTS: Malaria Screener reached 74.1% (95% CI 63.5-83.0) accuracy in detecting Plasmodium falciparum malaria using expert microscopy as the reference after a threshold calibration. It reached 71.8% (95% CI 61.0-81.0) accuracy when compared with PCR. The achieved accuracies meet the WHO Level 3 requirement for parasite detection. The processing time for each smear varies from 5 to 15 min, depending on the concentration of white blood cells (WBCs). In the post-study experiment, Malaria Screener reached 91.8% (95% CI 83.8-96.6) accuracy when patient-level results were calculated with a different method. This accuracy meets the WHO Level 1 requirement for parasite detection. In addition, PlasmodiumVF-Net, a newly developed algorithm, reached 83.1% (95% CI 77.0-88.1) accuracy when compared with expert microscopy and 81.0% (95% CI 74.6-86.3) accuracy when compared with PCR, reaching the WHO Level 2 requirement for detecting both Plasmodium falciparum and Plasmodium vivax malaria, without using the testing sites data for training or calibration. Results reported for both Malaria Screener and PlasmodiumVF-Net used thick smears for diagnosis. In this paper, both systems were not assessed in species identification and parasite counting, which are still under development. CONCLUSION: Malaria Screener showed the potential to be deployed in resource-limited areas to facilitate routine malaria screening. It is the first smartphone-based system for malaria diagnosis evaluated on the patient-level in a natural field environment. Thus, the results in the field reported here can serve as a reference for future studies.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Aplicaciones Móviles , Humanos , Teléfono Inteligente , Malaria/parasitología , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Malaria Vivax/diagnóstico , Plasmodium falciparum , Sensibilidad y Especificidad , Plasmodium vivax
3.
Malar J ; 21(1): 176, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672772

RESUMEN

BACKGROUND: Immunoassay platforms that simultaneously detect malaria antigens including histidine-rich protein 2 (HRP2)/HRP3 and Plasmodium lactate dehydrogenase (pLDH), are useful epidemiological tools for rapid diagnostic test evaluation. This study presents the comparative evaluation of two multiplex platforms in identifying Plasmodium falciparum with presence or absence of HRP2/HRP3 expression as being indicative of hrp2/hrp3 deletions and other Plasmodium species. Moreover, correlation between the malaria antigen measurements performed at these platforms is assessed after calibrating with either assay standards or international standards and the cross-reactivity among Plasmodium species is examined. METHODS: A 77-member panel of specimens composed of the World Health Organization (WHO) international Plasmodium antigen standards, cultured parasites for P. falciparum and Plasmodium knowlesi, and clinical specimens with mono-infections for P. falciparum, Plasmodium vivax, and Plasmodium malariae was generated as both whole blood and dried blood spot (DBS) specimens. Assays for HRP2, P. falciparum-specific pLDH (PfLDH), P. vivax-specific pLDH (PvLDH), and all human Plasmodium species Pan malaria pLDH (PanLDH) on the Human Malaria Array Q-Plex and the xMAP platforms were evaluated with these panels. RESULTS: The xMAP showed a higher percent positive agreement for identification of hrp2-deleted P. falciparum and Plasmodium species in whole blood and DBS than the Q-Plex. For whole blood samples, there was a highly positive correlation between the two platforms for PfLDH (Pearson r = 0.9926) and PvLDH (r = 0. 9792), moderate positive correlation for HRP2 (r = 0.7432), and poor correlation for PanLDH (r = 0.6139). In Pearson correlation analysis between the two platforms on the DBS, the same assays were r = 0.9828, r = 0.7679, r = 0.6432, and r = 0.8957, respectively. The xMAP HRP2 assay appeared to cross-react with HRP3, while the Q-Plex did not. The Q-Plex PfLDH assay cross-reacted with P. malariae, while the xMAP did not. For both platforms, P. knowlesi was detected on the PvLDH assay. The WHO international standards allowed normalization across both platforms on their HRP2, PfLDH, and PvLDH assays in whole blood and DBS. CONCLUSIONS: Q-Plex and xMAP show good agreement for identification of P. falciparum mutants with hrp2/hrp3 deletions, and other Plasmodium species. Quantitative results from both platforms, normalized into international units for HRP2, PfLDH, and PvLDH, showed good agreement and should allow comparison and analysis of results generated by either platform.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Plasmodium knowlesi , Antígenos de Protozoos/análisis , Pruebas Diagnósticas de Rutina/métodos , Humanos , Inmunoensayo , L-Lactato Deshidrogenasa/análisis , Malaria/diagnóstico , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Malaria Vivax/diagnóstico , Plasmodium falciparum , Proteínas Protozoarias , Sensibilidad y Especificidad
4.
Malar J ; 21(1): 111, 2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35366883

RESUMEN

BACKGROUND: Highly sensitive and accurate malaria diagnostic tools are essential to identify asymptomatic low parasitaemia infections. This study evaluated the performance of histidine-rich protein 2 (HRP-2) based rapid diagnostic tests (RDTs), microscopy and loop-mediated isothermal amplification (LAMP) for the detection of asymptomatic Plasmodium spp. infections in Northern Côte d'Ivoire, using nested polymerase chain reaction (nPCR) as reference. METHODS: A household-based survey was carried out in July 2016, in the health district of Korhogo, involving 1011 adults without malaria symptom nor history of fever during the week before recruitment. The fresh capillary blood samples were collected to detect Plasmodium infections using on HRP-2-based RDTs, microscopy and LAMP and stored as dried blood spots (DBS). A subset of the DBS (247/1011, 24.4%) was randomly selected for nPCR analyses. Additionally, venous blood samples, according to LAMP result (45 LAMP positive and 65 LAMP negative) were collected among the included participants to perform the nested PCR used as the reference. RESULTS: The prevalence of asymptomatic Plasmodium spp. infections determined by RDT, microscopy, and LAMP were 4% (95% confidence interval (CI) 2.8-5.3), 5.2% (95% CI 3.9-6.6) and 18.8% (95% CI 16.4-21.2), respectively. Considering PCR on venous blood as reference, performed on 110 samples, the sensibility and specificity were, respectively, 17.8% (95% CI 6.1-29.4) and 100% for RDT, 20.0% (95% CI 7.8-32) and 100% for microscopy, and 93.3% (95% CI 85.7-100) and 95.4% (95% CI 92.2-100) for LAMP. CONCLUSION: In Northern Côte d'Ivoire, asymptomatic Plasmodium infection was found to be widely distributed as approximately one out of five study participants was found to be Plasmodium infected. LAMP appears currently to be the only available diagnostic method that can identify in the field this reservoir of infections and should be the method to consider for potential future active case detection interventions targeting elimination of these infections.


Asunto(s)
Malaria , Plasmodium , Adulto , Côte d'Ivoire , Humanos , Malaria/diagnóstico , Microscopía/métodos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Plasmodium/genética , Sensibilidad y Especificidad
5.
BMC Infect Dis ; 22(1): 121, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35120441

RESUMEN

BACKGROUND: A new more highly sensitive rapid diagnostic test (HS-RDT) for Plasmodium falciparum malaria (Alere™/Abbott Malaria Ag P.f RDT [05FK140], now called NxTek™ Eliminate Malaria Ag Pf) was launched in 2017. The test has already been used in many research studies in a wide range of geographies and use cases. METHODS: In this study, we collate all published and available unpublished studies that use the HS-RDT and assess its performance in (i) prevalence surveys, (ii) clinical diagnosis, (iii) screening pregnant women, and (iv) active case detection. Two individual-level data sets from asymptomatic populations are used to fit logistic regression models to estimate the probability of HS-RDT positivity based on histidine-rich protein 2 (HRP2) concentration and parasite density. The performance of the HS-RDT in prevalence surveys is estimated by calculating the sensitivity and positive proportion in comparison to polymerase chain reaction (PCR) and conventional malaria RDTs. RESULTS: We find that across 18 studies, in prevalence surveys, the mean sensitivity of the HS-RDT is estimated to be 56.1% (95% confidence interval [CI] 46.9-65.4%) compared to 44.3% (95% CI 32.6-56.0%) for a conventional RDT (co-RDT) when using nucleic acid amplification techniques as the reference standard. In studies where prevalence was estimated using both the HS-RDT and a co-RDT, we found that prevalence was on average 46% higher using a HS-RDT compared to a co-RDT. For use in clinical diagnosis and screening pregnant women, the HS-RDT was not significantly more sensitive than a co-RDT. CONCLUSIONS: Overall, the evidence presented here suggests that the HS-RDT is more sensitive in asymptomatic populations and could provide a marginal improvement in clinical diagnosis and screening pregnant women. Although the HS-RDT has limited temperature stability and shelf-life claims compared to co-RDTs, there is no evidence to suggest, given this test has the same cost as current RDTs, it would have any negative impacts in terms of malaria misdiagnosis if it were widely used in all four population groups explored here.


Asunto(s)
Malaria Falciparum , Malaria , Antígenos de Protozoos , Estudios Transversales , Pruebas Diagnósticas de Rutina , Femenino , Humanos , Malaria/diagnóstico , Malaria/epidemiología , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Plasmodium falciparum , Embarazo , Proteínas Protozoarias , Sensibilidad y Especificidad
6.
PLoS Negl Trop Dis ; 16(2): e0010174, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35176015

RESUMEN

BACKGROUND: The introduction of novel short course treatment regimens for the radical cure of Plasmodium vivax requires reliable point-of-care diagnosis that can identify glucose-6-phosphate dehydrogenase (G6PD) deficient individuals. While deficient males can be identified using a qualitative diagnostic test, the genetic make-up of females requires a quantitative measurement. SD Biosensor (Republic of Korea) has developed a handheld quantitative G6PD diagnostic (STANDARD G6PD test), that has approximately 90% accuracy in field studies for identifying individuals with intermediate or severe deficiency. The device can only be considered for routine care if precision of the assay is high. METHODS AND FINDINGS: Commercial lyophilised controls (ACS Analytics, USA) with high, intermediate, and low G6PD activities were assessed 20 times on 10 Biosensor devices and compared to spectrophotometry (Pointe Scientific, USA). Each device was then dispatched to one of 10 different laboratories with a standard set of the controls. Each control was tested 40 times at each laboratory by a single user and compared to spectrophotometry results. When tested at one site, the mean coefficient of variation (CV) was 0.111, 0.172 and 0.260 for high, intermediate, and low controls across all devices respectively; combined G6PD Biosensor readings correlated well with spectrophotometry (rs = 0.859, p<0.001). When tested in different laboratories, correlation was lower (rs = 0.604, p<0.001) and G6PD activity determined by Biosensor for the low and intermediate controls overlapped. The use of lyophilised human blood samples rather than fresh blood may have affected these findings. Biosensor G6PD readings between sites did not differ significantly (p = 0.436), whereas spectrophotometry readings differed markedly between sites (p<0.001). CONCLUSIONS: Repeatability and inter-laboratory reproducibility of the Biosensor were good; though the device did not reliably discriminate between intermediate and low G6PD activities of the lyophilized specimens. Clinical studies are now required to assess the devices performance in practice.


Asunto(s)
Técnicas Biosensibles/normas , Deficiencia de Glucosafosfato Deshidrogenasa/diagnóstico , Glucosafosfato Deshidrogenasa/sangre , Femenino , Liofilización , Deficiencia de Glucosafosfato Deshidrogenasa/sangre , Humanos , Pruebas en el Punto de Atención/normas , Reproducibilidad de los Resultados , Espectrofotometría
7.
Clin Infect Dis ; 74(1): 40-51, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34718455

RESUMEN

BACKGROUND: The emergence and spread of Plasmodium falciparum parasites that lack HRP2/3 proteins and the resulting decreased utility of HRP2-based malaria rapid diagnostic tests (RDTs) prompted the World Health Organization and other global health stakeholders to prioritize the discovery of novel diagnostic biomarkers for malaria. METHODS: To address this pressing need, we adopted a dual, systematic approach by conducting a systematic review of the literature for publications on diagnostic biomarkers for uncomplicated malaria and a systematic in silico analysis of P. falciparum proteomics data for Plasmodium proteins with favorable diagnostic features. RESULTS: Our complementary analyses led us to 2 novel malaria diagnostic biomarkers compatible for use in an RDT format: glyceraldehyde 3-phosphate dehydrogenase and dihydrofolate reductase-thymidylate synthase. CONCLUSIONS: Overall, our results pave the way for the development of next-generation malaria RDTs based on new antigens by identifying 2 lead candidates with favorable diagnostic features and partially de-risked product development prospects.


Asunto(s)
Malaria Falciparum , Malaria , Antígenos de Protozoos , Biomarcadores/análisis , Pruebas Diagnósticas de Rutina/métodos , Humanos , Malaria/diagnóstico , Malaria Falciparum/diagnóstico , Plasmodium falciparum/genética , Proteínas Protozoarias , Sensibilidad y Especificidad
8.
Malar J ; 20(1): 379, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34560899

RESUMEN

BACKGROUND: The diagnosis of malaria, using microscopy or rapid diagnostic tests (RDTs), requires the collection of capillary blood. This procedure is relatively simple to perform but invasive and poses potential risks to patients and health workers, arising from the manipulation of potentially infectious bodily fluids. Less or non-invasive diagnostic tests, based on urine, saliva or requiring no sampling, have the potential to generate less discomfort for the patient and to offer simpler and less risky testing procedures that could be safely performed by untrained staff or even self-performed. To explore the potential acceptance and perceived value of such non-invasive tests, an online, international survey was conducted to gather feedback from National Malaria Control Programme (NMCP) representatives. METHODS: An online survey comprising nineteen questions, available in English, French or Spanish, was emailed to 300 individuals who work with NMCPs in malaria-endemic countries. Answers were collected between November and December 2017; responses were qualitatively analysed to identify key themes and trends and quantitatively analysed to determine average values stratified by region. RESULTS: Responses were received from 70 individuals, from 33 countries. Approximately half of the respondents (52 %) considered current blood-based tests for malaria to be minimally invasive and non-problematic in their setting. For these participants, non-invasive tests would only be of interest if they brought additional performance improvements, as compared with the performance of microscopy and RDTs. Most respondents were of the view that saliva-based (80 %) and urine-based (66 %) tests would be more readily acceptable among children than blood-based tests. Potential use-case scenarios of interest for both saliva- and urine-based tests were ease-of-testing by community health workers, additional surveillance, self-testing, and outbreak investigation. Many respondents (41 %) thought that if saliva-based tests retailed at <$0.50 per unit they could largely replace conventional RDTs, whereas only 25 % of respondents thought a similarly priced urine-based test would do so. CONCLUSIONS: Although limited to NMCP stakeholders, this survey indicated that current tests for malaria, based on capillary blood, are generally perceived to be minimally invasive and non-problematic. Non-invasive tests, especially if saliva-based, would be welcome if they could match or out-perform the price and performance of current blood-based tests.


Asunto(s)
Pruebas Diagnósticas de Rutina/psicología , Conocimientos, Actitudes y Práctica en Salud , Malaria/diagnóstico , Aceptación de la Atención de Salud/estadística & datos numéricos , Humanos , Sensibilidad y Especificidad
9.
J Parasit Dis ; 45(2): 479-489, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34290484

RESUMEN

Dried blood spots (DBS) typically prepared on filter papers are an ideal sample type for malaria surveillance by offering easy and cost-effective methods in terms of sample collection, storage, and transport. The objective of this study was to evaluate the applicability of DBS with a commercial multiplex malaria assay, developed to concurrently measure Plasmodium antigens, histidine-rich protein 2 (HRP2), Plasmodium lactate dehydrogenase (pLDH), and a host inflammatory biomarker, C-reactive protein (CRP), in whole blood. The assay conditions were optimized for DBS, and thermal stability for measurement of Plasmodium antigens and CRP in dried blood were determined. Performance of the multiplex assay on matched DBS and whole blood pellet samples was also evaluated using the clinical samples. The results indicate the acceptable performance in multiplex antigen detection using DBS samples. At cutoff levels for DBS, with a diagnostic specificity with a lower 95% confidence bound > 92%, diagnostic sensitivities against polymerase chain reaction (PCR)-confirmed malaria for HRP2, Pf LDH, Pv LDH, and Pan LDH were 93.5%, 80.4%, 21.3%, and 55.6%, respectively. The half-life of pLDH was significantly less than that of HRP2 in thermal stability studies. Results with DBS samples collected from Peru indicate that the uncontrolled storage conditions of DBS can result in inaccurate reporting for infection with P. falciparum parasites with hrp2/3 deletions. With careful consideration that minimizing the unfavorable DBS storage environment is essential for ensuring integrity of heat-labile Plasmodium antigens, DBS samples can be used as an alternative to liquid whole blood to detect P. falciparum with hrp2/3 deletions in malaria surveillance. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s12639-020-01325-2) contains supplementary material, which is available to authorized users.

10.
Malar J ; 20(1): 217, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980257

RESUMEN

BACKGROUND: The radical cure of Plasmodium vivax requires treatment with an 8-aminoquinoline drug, such as primaquine and tafenoquine, to eradicate liver hypnozoite stages, which can reactivate to cause relapsing infections. Safe treatment regimens require prior screening of patients for glucose-6-phosphate dehydrogenase (G6PD) deficiency to avoid potential life-threatening drug induced haemolysis. Testing is rarely available in malaria endemic countries, but will be needed to support routine use of radical cure. This study investigates end-user perspectives in Bangladesh on the introduction of a quantitative G6PD test (SD Biosensor STANDARD™ G6PD analyser) to support malaria elimination. METHODS: The perspectives of users on the SD Biosensor test were analysed using semi-structured interviews and focus group discussions with health care providers and malaria programme officers in Bangladesh. Key emerging themes regarding the feasibility of introducing this test into routine practice, including perceived barriers, were analysed. RESULTS: In total 63 participants were interviewed. Participants emphasized the life-saving potential of the biosensor, but raised concerns including the impact of limited staff time, high workload and some technical aspects of the device. Participants highlighted that there are both too few and too many P. vivax patients to implement G6PD testing owing to challenges of funding, workload and complex testing infrastructure. Implementing the biosensor would require flexibility and improvisation to deal with remote sites, overcoming a low index of suspicion and mutual interplay of declining patient numbers and reluctance to test. This approach would generate new forms of evidence to justify introduction in policy and carefully consider questions of deployment given declining patient numbers. CONCLUSIONS: The results of the study show that, in an elimination context, the importance of malaria needs to be maintained for both policy makers and the affected communities, in this case by ensuring P. vivax, PQ treatment, and G6PD deficiency remain visible. Availability of new technologies, such as the biosensor, will fuel ongoing debates about priorities for allocating resources that must be adapted to a constantly evolving target. Technical and logistical concerns regarding the biosensor should be addressed by future product designs, adequate training, strengthened supply chains, and careful planning of communication, advocacy and staff interactions at all health system levels.


Asunto(s)
Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Deficiencia de Glucosafosfato Deshidrogenasa/diagnóstico , Personal de Salud/estadística & datos numéricos , Malaria Vivax/diagnóstico , Bangladesh , Pruebas Diagnósticas de Rutina/psicología , Personal de Salud/psicología , Humanos
11.
Clin Infect Dis ; 73(2): e355-e361, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32569359

RESUMEN

BACKGROUND: Malaria infections in the first trimester of pregnancy are frequent and deleterious for both mother and child health. To investigate if these early infections are newly acquired or already present in the host, we assessed whether parasites detected before pregnancy and those detected in early pregnancy are the same infection. METHODS: We used data from the preconceptional "RECIPAL" study (Benin, 2014-2017). Sixty-three pregnant women of 411 included who had a malaria infection detected by quantitative polymerase chain reaction both before pregnancy and at the first antenatal care (ANC) visit were selected for this study. Two highly polymorphic markers, msp-2 and glurp, and a fragment-analysis method were used to enumerate the Plasmodium falciparum genotypes and to quantify their proportions within isolates. An infection was considered as persistent when identical msp-2 and glurp genotypes were found in the corresponding prepregnancy and early-pregnancy samples. RESULTS: The median time between the 2 malaria screenings was 3 months. The median gestational age at the first ANC visit was 6.4 weeks. Most infections before pregnancy were submicroscopic infections. Based on both msp-2 and glurp genotyping, the infection was similar before and in early pregnancy in 46% (29/63) of cases. CONCLUSIONS: Almost half of P. falciparum infections detected in the first trimester originate before pregnancy. Protecting young women from malaria infection before pregnancy might reduce the prevalence of malaria in early pregnancy and its related poor maternal and birth outcomes.


Asunto(s)
Malaria Falciparum , Malaria , Benin/epidemiología , Niño , Femenino , Genotipo , Humanos , Malaria Falciparum/epidemiología , Plasmodium falciparum/genética , Embarazo
13.
Am J Trop Med Hyg ; 103(4): 1549-1552, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32748776

RESUMEN

Plasmodium vivax is co-endemic with Plasmodium falciparum in Peru, and optimum management requires distinguishing these two species in the blood of patients. For the differential identification of P. vivax and other Plasmodium spp., the LoopampTM Malaria Pan Detection Kit in combination with the Loopamp Malaria Pv Detection Kit (Eiken Chemical Co. Ltd., Tokyo, Japan) was used to evaluate 559 whole blood samples collected in 2017 from febrile patients with suspected malaria attending different health facilities in the Loreto region. The Loopamp Malaria Pan Detection Kit showed a sensitivity of 87.7% (95% CI: 83.5-91.9) and a specificity of 94.4% (95% CI: 91.9-96.9) and good agreement with PCR (Cohen's kappa 0.8266, 95% CI: 0.7792-0.874). By comparison, the Loopamp Malaria Pv Detection Kit showed a similar sensitivity (84.4%, 95% CI: 79.0-89.7) and specificity (92.4%, 95% CI: 89.7-95.0) and substantial agreement with PCR (Cohen's kappa: 0.7661, 95% CI: 0.7088-0.8234).


Asunto(s)
Malaria Vivax/diagnóstico , Malaria/diagnóstico , Plasmodium vivax/aislamiento & purificación , Plasmodium/aislamiento & purificación , Fiebre , Humanos , Malaria/parasitología , Malaria Vivax/parasitología , Técnicas de Amplificación de Ácido Nucleico , Perú , Plasmodium/genética , Plasmodium vivax/genética , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad
14.
Malar J ; 19(1): 247, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660630

RESUMEN

BACKGROUND: The production and use of malaria rapid diagnostic tests (RDTs) has risen dramatically over the past 20 years. In view of weak or non-existing in vitro diagnostics (IVD) regulations and post-marketing surveillance (PMS) systems in malaria endemic countries, the World Health Organization, later joined by the Foundation for Innovative New Diagnostics, established an independent, centralized performance evaluation and Lot Testing (LT) programme to safeguard against poor quality of RDTs being distributed through the public health sector of malaria endemic countries. RDT performances and manufacturer quality management systems have evolved over the past decade raising questions about the future need for a centralized LT programme. RESULTS: Between 2007 and 2017, 6056 lots have been evaluated, representing approximately 1.6 Billion RDTs. A total of 69 lots (1.1%) failed the quality control. Of these failures, 26 were detected at receipt of the RDT lot in the LT laboratory, representing an estimated 7.9 million poor quality RDTs, and LT requesters were advised that RDTs were not of sufficient quality for use in patient management. Forty-three were detected after long-term storage in the laboratory, of which 24 (56%) were found to be due to a major issue with insufficient buffer volume in single use buffer vials, others predominantly showing loss of sensitivity. The annual cost of running the programme, based on expenses recorded in years 2014-2016, an estimated volume of 700 lots per year and including replenishment of quality control samples, was estimated at US$ 178,500 ($US 255 per lot tested). CONCLUSIONS: Despite the clear benefits of the centralized LT programme and its low cost compared with the potential costs of each country establishing its own PMS system for RDTs, funding concerns have made its future beyond 2020 uncertain. In order to manage the risks of misdiagnosis due to low quality RDTs, and to ensure the continued safety and reliability of malaria case management, there is a need to ensure that an effective and implementable approach to RDT quality control continues to be available to programmes in endemic countries.


Asunto(s)
Pruebas Diagnósticas de Rutina/normas , Malaria/diagnóstico , Control de Calidad , Pruebas Diagnósticas de Rutina/economía , Reproducibilidad de los Resultados
15.
Malar J ; 19(1): 188, 2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32448310

RESUMEN

BACKGROUND: While sub-microscopic malarial infections are frequent and potentially deleterious during pregnancy, routine molecular detection is still not feasible. This study aimed to assess the performance of a Histidine Rich Protein 2 (HRP2)-based ultrasensitive rapid diagnostic test (uRDT, Alere Malaria Ag Pf) for the detection of infections of low parasite density in pregnant women. METHODS: This was a retrospective study based on samples collected in Benin from 2014 to 2017. A total of 942 whole blood samples collected in 327 women in the 1st and 3rd trimesters and at delivery were tested by uRDT, conventional RDT (cRDT, SD BIOLINE Malaria Ag Pf), microscopy, quantitative polymerase chain-reaction (qPCR) and Luminex-based suspension array technology targeting P. falciparum HRP2. The performance of each RDT was evaluated using qPCR as reference standard. The association between infections detected by uRDT, but not by cRDT, with poor maternal and birth outcomes was assessed using multivariate regression models. RESULTS: The overall positivity rate detected by cRDT, uRDT, and qPCR was 11.6% (109/942), 16.2% (153/942) and 18.3% (172/942), respectively. Out of 172 qPCR-positive samples, 68 were uRDT-negative. uRDT had a significantly better sensitivity (60.5% [52.7-67.8]) than cRDT (44.2% [36.6-51.9]) and a marginally decreased specificity (93.6% [91.7-95.3] versus 95.7% [94.0-97.0]). The gain in sensitivity was particularly high (33%) and statistically significant in the 1st trimester. Only 28 (41%) out of the 68 samples which were qPCR-positive, but uRDT-negative had detectable but very low levels of HRP2 (191 ng/mL). Infections that were detected by uRDT but not by cRDT were associated with a 3.4-times (95%CI 1.29-9.19) increased risk of anaemia during pregnancy. CONCLUSIONS: This study demonstrates the higher performance of uRDT, as compared to cRDTs, to detect low parasite density P. falciparum infections during pregnancy, particularly in the 1st trimester. uRDT allowed the detection of infections associated with maternal anaemia.


Asunto(s)
Antígenos de Protozoos/análisis , Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Malaria Falciparum/epidemiología , Plasmodium falciparum/aislamiento & purificación , Proteínas Protozoarias/análisis , Adulto , Femenino , Humanos , Malaria Falciparum/parasitología , Embarazo , Prevalencia , Estudios Retrospectivos , Sensibilidad y Especificidad , Adulto Joven
16.
Nat Med ; 26(5): 741-749, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32405064

RESUMEN

A major gap in the Plasmodium vivax elimination toolkit is the identification of individuals carrying clinically silent and undetectable liver-stage parasites, called hypnozoites. This study developed a panel of serological exposure markers capable of classifying individuals with recent P. vivax infections who have a high likelihood of harboring hypnozoites. We measured IgG antibody responses to 342 P. vivax proteins in longitudinal clinical cohorts conducted in Thailand and Brazil and identified candidate serological markers of exposure. Candidate markers were validated using samples from year-long observational cohorts conducted in Thailand, Brazil and the Solomon Islands and antibody responses to eight P. vivax proteins classified P. vivax infections in the previous 9 months with 80% sensitivity and specificity. Mathematical models demonstrate that a serological testing and treatment strategy could reduce P. vivax prevalence by 59-69%. These eight antibody responses can serve as a biomarker, identifying individuals who should be targeted with anti-hypnozoite therapy.


Asunto(s)
Biomarcadores/sangre , Malaria Vivax/diagnóstico , Pruebas Serológicas/métodos , Adulto , Brasil/epidemiología , Niño , Estudios de Cohortes , Diagnóstico Precoz , Humanos , Inmunoglobulina G/análisis , Inmunoglobulina G/sangre , Control de Infecciones/métodos , Estudios Longitudinales , Malaria Vivax/sangre , Malaria Vivax/epidemiología , Melanesia/epidemiología , Plasmodium vivax/fisiología , Prevalencia , Sensibilidad y Especificidad , Pruebas Serológicas/normas , Tailandia/epidemiología , Factores de Tiempo
18.
Malar J ; 19(1): 129, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228615

RESUMEN

BACKGROUND: The World Health Organization (WHO) recommends parasite-based diagnosis of malaria. In recent years, there has been surge in the use of various kinds of nucleic-acid amplification based tests (NAATs) for detection and identification of Plasmodium spp. to support clinical care in high-resource settings and clinical and epidemiological research worldwide. However, these tests are not without challenges, including lack (or limited use) of standards and lack of reproducibility, due in part to variation in protocols amongst laboratories. Therefore, there is a need for rigorous quality control, including a robust external quality assessment (EQA) scheme targeted towards malaria NAATs. To this effect, the WHO Global Malaria Programme worked with the UK National External Quality Assessment Scheme (UK NEQAS) Parasitology and with technical experts to launch a global NAAT EQA scheme in January 2017. METHODS: Panels of NAAT EQA specimens containing five major species of human-infecting Plasmodium at various parasite concentrations and negative samples were created in lyophilized blood (LB) and dried blood spot (DBS) formats. Two distributions per year were sent, containing five LB and five DBS specimens. Samples were tested and validated by six expert referee laboratories prior to distribution. Between 37 and 45 laboratories participated in each distribution and submitted results using the online submission portal of UK NEQAS. Participants were scored based on their laboratory's stated capacity to identify Plasmodium species, and individual laboratory reports were sent which included performance comparison with anonymized peers. RESULTS: Analysis of the first three distributions revealed that the factors that most significantly affected performance were sample format (DBS vs LB), species and parasite density, while laboratory location and the reported methodology used (type of nucleic acid extraction, amplification, or DNA vs RNA target) did not significantly affect performance. Referee laboratories performed better than non-referee laboratories. CONCLUSIONS: Globally, malaria NAAT assays now inform a range of clinical, epidemiological and research investigations. EQA schemes offer a way for laboratories to assess and improve their performance, which is critical to safeguarding the reliability of data and diagnoses especially in situations where various NAAT methodologies and protocols are in use.


Asunto(s)
Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Malaria/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/estadística & datos numéricos , Plasmodium/aislamiento & purificación , Garantía de la Calidad de Atención de Salud/estadística & datos numéricos , Humanos , Control de Calidad , Reproducibilidad de los Resultados , Organización Mundial de la Salud
19.
Malar J ; 19(1): 12, 2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31918718

RESUMEN

BACKGROUND: Malaria diagnostics by rapid diagnostic test (RDT) relies primarily on the qualitative detection of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and Plasmodium spp lactate dehydrogenase (pLDH). As novel RDTs with increased sensitivity are being developed and implemented as point of care diagnostics, highly sensitive laboratory-based assays are needed for evaluating RDT performance. Here, a quantitative suspension array technology (qSAT) was developed, validated and applied for the simultaneous detection of PfHRP2 and pLDH in a variety of biological samples (whole blood, plasma and dried blood spots) from individuals living in different endemic countries. RESULTS: The qSAT was specific for the target antigens, with analytical ranges of 6.8 to 762.8 pg/ml for PfHRP2 and 78.1 to 17076.6 pg/ml for P. falciparum LDH (Pf-LDH). The assay detected Plasmodium vivax LDH (Pv-LDH) at a lower sensitivity than Pf-LDH (analytical range of 1093.20 to 187288.5 pg/ml). Both PfHRP2 and pLDH levels determined using the qSAT showed to positively correlate with parasite densities determined by quantitative PCR (Spearman r = 0.59 and 0.75, respectively) as well as microscopy (Spearman r = 0.40 and 0.75, respectively), suggesting the assay to be a good predictor of parasite density. CONCLUSION: This immunoassay can be used as a reference test for the detection and quantification of PfHRP2 and pLDH, and could serve for external validation of RDT performance, to determine antigen persistence after parasite clearance, as well as a complementary tool to assess malaria burden in endemic settings.


Asunto(s)
Antígenos de Protozoos/sangre , L-Lactato Deshidrogenasa/sangre , Malaria Falciparum/diagnóstico , Malaria Vivax/diagnóstico , Proteínas Protozoarias/sangre , Adolescente , Adulto , África , Animales , Biotina , Calibración , Niño , Estudios Transversales , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Malaria Falciparum/sangre , Malaria Vivax/sangre , Ratones , Microesferas , Parasitemia/sangre , Parasitemia/diagnóstico , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa , América del Sur , España , Adulto Joven
20.
J Infect Dis ; 219(9): 1490-1498, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30476111

RESUMEN

BACKGROUND: A novel ultrasensitive malaria rapid diagnostic test (us-RDT) has been developed for improved active Plasmodium falciparum infection detection. The usefulness of this us-RDT in clinical diagnosis and fever management has not been evaluated. METHODS: Diagnostic performance of us-RDT was compared retrospectively to that of conventional RDT (co-RDT) in 3000 children and 515 adults presenting with fever to Tanzanian outpatient clinics. The parasite density was measured by an ultrasensitive qPCR (us-qPCR), and the HRP2 concentration was measured by an enzyme-linked immunosorbent assay. RESULTS: us-RDT identified few additional P. falciparum-positive patients as compared to co-RDT (276 vs 265 parasite-positive patients detected), with only a marginally greater sensitivity (75% vs 73%), using us-qPCR as the gold standard (357 parasite-positive patients detected). The specificity of both RDTs was >99%. Five of 11 additional patients testing positive by us-RDT had negative results by us-qPCR. The HRP2 concentration was above the limit of detection for co-RDT (>3653 pg of HRP2 per mL of blood) in almost all infections (99% [236 of 239]) with a parasite density >100 parasites per µL of blood. At parasite densities <100 parasites/µL, the HRP2 concentration was above the limits of detection of us-RDT (>793 pg/mL) and co-RDT in 29 (25%) and 24 (20%) of 118 patients, respectively. CONCLUSION: There is neither an advantage nor a risk of using us-RDT, rather than co-RDT, for clinical malaria diagnosis. In febrile patients, only a small proportion of infections are characterized by a parasite density or an HRP2 concentration in the range where use of us-RDT would confer a meaningful advantage over co-RDT.


Asunto(s)
Antígenos de Protozoos/sangre , Fiebre/sangre , Malaria Falciparum/sangre , Malaria Falciparum/diagnóstico , Parasitemia/sangre , Proteínas Protozoarias/sangre , Juego de Reactivos para Diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Preescolar , Estudios Transversales , Reacciones Falso Negativas , Reacciones Falso Positivas , Fiebre/parasitología , Humanos , Lactante , Límite de Detección , Malaria Falciparum/complicaciones , Persona de Mediana Edad , Parasitemia/parasitología , Estudios Retrospectivos , Sensibilidad y Especificidad , Tanzanía , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...