Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
MedComm (2020) ; 4(6): e429, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38020716

RESUMEN

Mutations in LRRK2 (encoding leucine-rich repeat kinase 2 protein, LRRK2) are the most common genetic risk factors for Parkinson's disease (PD), and increased LRRK2 kinase activity was observed in sporadic PD. Therefore, inhibition of LRRK2 has been tested as a disease-modifying therapeutic strategy using the LRRK2 mutant mice and sporadic PD. Here, we report a newly designed molecule, FL090, as a LRRK2 kinase inhibitor, verified in cell culture and animal models of PD. Using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice and SNCA A53T transgenic mice, FL090 ameliorated motor dysfunctions, reduced LRRK2 kinase activity, and rescued loss in the dopaminergic neurons in the substantia nigra. Notably, by RNA-Seq analysis, we identified microtubule-associated protein 1 (MAP1B) as a crucial mediator of FL090's neuroprotective effects and found that MAP1B and LRRK2 co-localize. Overexpression of MAP1B rescued 1-methyl-4-phenylpyridinium induced cytotoxicity through rescuing the lysosomal function, and the protective effect of FL090 was lost in MAP1B knockout cells. Further studies may be focused on the in vivo mechanisms of MAP1B and microtubule function in PD. Collectively, these findings highlight the potential of FL090 as a therapeutic agent for sporadic PD and familial PD without LRRK2 mutations.

2.
Mol Psychiatry ; 28(9): 3982-3993, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37735502

RESUMEN

Tau protein is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies, but its physiological function is in debate. Mostly explored in the brain, tau is also expressed in the pancreas. We further explored the mechanism of tau's involvement in the regulation of glucose-stimulated insulin secretion (GSIS) in islet ß-cells, and established a potential relationship between type 2 diabetes mellitus (T2DM) and AD. We demonstrate that pancreatic tau is crucial for insulin secretion regulation and glucose homeostasis. Tau levels were found to be elevated in ß-islet cells of patients with T2DM, and loss of tau enhanced insulin secretion in cell lines, drosophila, and mice. Pharmacological or genetic suppression of tau in the db/db diabetic mouse model normalized glucose levels by promoting insulin secretion and was recapitulated by pharmacological inhibition of microtubule assembly. Clinical studies further showed that serum tau protein was positively correlated with blood glucose levels in healthy controls, which was lost in AD. These findings present tau as a common therapeutic target between AD and T2DM.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Secreción de Insulina , Proteínas tau/metabolismo , Páncreas/metabolismo , Páncreas/patología , Glucosa/metabolismo , Enfermedad de Alzheimer/metabolismo
3.
Neurotherapeutics ; 20(4): 1154-1166, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37133631

RESUMEN

Ferroptosis is a programmed cell death pathway that is recently linked to Parkinson's disease (PD), where the key genes and molecules involved are still yet to be defined. Acyl-CoA synthetase long-chain family member 4 (ACSL4) esterifies polyunsaturated fatty acids (PUFAs) which is essential to trigger ferroptosis, and is suggested as a key gene in the pathogenesis of several neurological diseases including ischemic stroke and multiple sclerosis. Here, we report that ACSL4 expression in the substantia nigra (SN) was increased in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated model of PD and in dopaminergic neurons in PD patients. Knockdown of ACSL4 in the SN protected against dopaminergic neuronal death and motor deficits in the MPTP mice, while inhibition of ACSL4 activity with Triacsin C similarly ameliorated the parkinsonism phenotypes. Similar effects of ACSL4 reduction were observed in cells treated with 1-methyl-4-phenylpyridinium (MPP+) and it specifically prevented the lipid ROS elevation without affecting the mitochondrial ROS changes. These data support ACSL4 as a therapeutic target associated with lipid peroxidation in PD.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Animales , Ratones , Apoptosis , Neuronas Dopaminérgicas/metabolismo , Lípidos , Ratones Endogámicos C57BL , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/metabolismo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Humanos
4.
Signal Transduct Target Ther ; 7(1): 59, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197442

RESUMEN

Ischemic stroke represents a significant danger to human beings, especially the elderly. Interventions are only available to remove the clot, and the mechanism of neuronal death during ischemic stroke is still in debate. Ferroptosis is increasingly appreciated as a mechanism of cell death after ischemia in various organs. Here we report that the serine protease, thrombin, instigates ferroptotic signaling by promoting arachidonic acid mobilization and subsequent esterification by the ferroptotic gene, acyl-CoA synthetase long-chain family member 4 (ACSL4). An unbiased multi-omics approach identified thrombin and ACSL4 genes/proteins, and their pro-ferroptotic phosphatidylethanolamine lipid products, as prominently altered upon the middle cerebral artery occlusion in rodents. Genetically or pharmacologically inhibiting multiple points in this pathway attenuated outcomes of models of ischemia in vitro and in vivo. Therefore, the thrombin-ACSL4 axis may be a key therapeutic target to ameliorate ferroptotic neuronal injury during ischemic stroke.


Asunto(s)
Isquemia Encefálica , Coenzima A Ligasas , Ferroptosis , Trombina , Anciano , Isquemia Encefálica/genética , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Ferroptosis/fisiología , Humanos , Reperfusión , Trombina/genética , Trombina/metabolismo
5.
J Alzheimers Dis ; 80(4): 1353-1362, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33682718

RESUMEN

The detection of plasma tau and its phosphorylation is technically challenging due to the relatively low sensitivity. However, in Alzheimer's disease and other tauopathies, it is hypothesized that tau in the biofluid may serve as a biomarker. In recent years, several ultrasensitive assays have been developed, which can successfully detect tau and its phosphorylation in various biofluids, and collectively demonstrated the prognostic and diagnostic value of plasma tau/phosphorylated tau. Here we have summarized the principle of four ultrasensitive assays newly developed suitable for plasma tau detection, namely single-molecule array, immunomagnetic reduction assay, enhanced immunoassay using multi-arrayed fiber optics, and meso scale discovery assay, with their advantages and applications. We have also compared these assays with traditional enzyme-linked-immunosorbent serologic assay, hoping to facilitate future tau-based biomarker discovery for Alzheimer's disease and other neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Bioensayo/métodos , Proteínas tau/sangre , Enfermedad de Alzheimer/sangre , Biomarcadores/sangre , Ensayo de Inmunoadsorción Enzimática , Humanos , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA