Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 799
Filtrar
1.
Nat Commun ; 15(1): 5632, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965276

RESUMEN

The power conversion efficiency of perovskite solar cells continues to increase. However, defects in perovskite materials are detrimental to their carrier dynamics and structural stability, ultimately limiting the photovoltaic characteristics and stability of perovskite solar cells. Herein, we report that 6H polytype perovskite effectively engineers defects at the interface with cubic polytype FAPbI3, which facilitates radiative recombination and improves the stability of the polycrystalline film. We particularly show the detrimental effects of shallow-level defect that originates from the formation of the most dominant iodide vacancy (VI+) in FAPbI3. Furthermore, additional surface passivation on top of the hetero-polytypic perovskite film results in an ultra-long carrier lifetime exceeding 18 µs, affords power conversion efficiencies of 24.13% for perovskite solar cells, 21.92% (certified power conversion efficiency: 21.44%) for a module, and long-term stability. The hetero-polytypic perovskite configuration may be considered as close to the ideal polycrystalline structure in terms of charge carrier dynamics and stability.

2.
Nat Commun ; 15(1): 5541, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956044

RESUMEN

To enhance the reaction kinetics without sacrificing activity in porous materials, one potential solution is to utilize the anisotropic distribution of pores and channels besides enriching active centers at the reactive surfaces. Herein, by designing a unique distribution of oriented pores and single crystalline array structures in the presence of abundant acid sites as demonstrated in the ZSM-5 nanorod arrays grown on monoliths, both enhanced dynamics and improved capacity are exhibited simultaneously in propene capture at low temperature within a short duration. Meanwhile, the ZSM-5 array also helps mitigate the long-chain HCs and coking formation due to the enhanced diffusion of reactants in and reaction products out of the array structures. Further integrating the ZSM-5 array with Co3O4 nanoarray enables comprehensive propene removal throughout a wider temperature range. The array structured film design could offer energy-efficient solutions to overcome both sorption and reaction kinetic restrictions in various solid porous materials for various energy and chemical transformation applications.

3.
J Neurointerv Surg ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862208

RESUMEN

The New Zealand rabbit elastase-induced arterial aneurysm of the right common carotid artery remains a widely used model for assessing the effectiveness and safety of new neuroendovascular devices.1 This model offers a simple and reliable platform for pre-clinical in vivo investigations, crucial for comprehending the biological processes underlying aneurysm healing after endovascular treatment.2 Notably, the induced aneurysm exhibits morphological, hemodynamic, and histological characteristics similar to human intracranial aneurysms. The creation of the aneurysm is performed using open and endovascular techniques. Each step of the procedure requires a meticulous and controlled gesture to ensure reproducibility of the aneurysm and minimize animal misuse. In video 1 we present a step-by-step procedural guide for aneurysm creation and follow-up. We hope this resource will help in promoting this model and provide useful guidance for researchers in the field.neurintsurg;jnis-2024-021912v1/V1F1V1Video 1Surgical procedure of creating elastase-induced aneurysms in rabbits.

4.
Chem Commun (Camb) ; 60(53): 6761-6764, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38864330

RESUMEN

Constructing frustrated Lewis pairs (FLPs) on catalysts will provide catalytic sites to activate CO2 and boost photocatalytic CO2 reduction. Herein, a Ce-doped bismuth oxide (CeBiOX) with FLPs was designed by loading [(α-SbW9O33)2Cu3(H2O)3]12- (Cu3) via strong electrostatic interactions to create oxygen vacancies (OVs). Detailed experiments and measurements showed that Cu3 could regulate the FLPs and optimize the band structure of CeBiOX to boost photocatalytic CO2 reduction. In particular, the Cu3/CeBiOX composite exhibited the highest yields of CO (42.85 µmoL g-1) and CH4 (13.23 µmoL g-1), being 6.6 and 3.3 times, and 4.9 and 6.3 times higher than those of pristine Bi2O3 and CeBiOX, respectively. This work provides a significant and mild approach to obtaining advanced catalysts with tuneable FLPs for more fields.

5.
Sensors (Basel) ; 24(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38894372

RESUMEN

For orthogonal frequency division multiplexing (OFDM) systems in high-mobility scenarios, the estimation of time-varying multipath channels not only has a large error, which affects system performance, but also requires plenty of pilots, resulting in low spectral efficiency. To address these issues, we propose a time-varying multipath channel estimation method based on distributed compressed sensing and a multi-symbol complex exponential basis expansion model (MS-CE-BEM) by exploiting the temporal correlation and the joint delay sparsity of wideband wireless channels within the duration of multiple OFDM symbols. Furthermore, in the proposed method, a sparse pilot pattern with the self-cancellation of pilot intercarrier interference (ICI) is adopted to reduce the input parameter error of the MS-CE-BEM, and a symmetrical extension technique is introduced to reduce the modeling error. Simulation results show that, compared with existing methods, this proposed method has superior performances in channel estimation and spectrum utilization for sparse time-varying channels.

6.
Vascular ; : 17085381241262575, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885967

RESUMEN

OBJECTIVE: This study used unsupervised machine learning (UML) cluster analysis to explore clinical phenotypes of endovascular aortic repair (EVAR) for abdominal aortic aneurysm (AAA) patients based on radiomics. METHOD: We retrospectively reviewed 1785 patients with infra-renal AAA who underwent elective EVAR procedures between January 2010 and December 2020. Pyradiomics was used to extract the radiomics features. Statistical analysis was applied to determine the radiomics features that related to severe adverse events (SAEs) after EVAR. The selected features were used for UML cluster analysis in training set and validation in test set. Comparison of basic characteristics and radiomics features of different clusters. The Kaplan-Meier analysis was conducted to generate the cumulative incidence of freedom from SAEs rate. RESULT: A total of 1180 patients were enrolled. During the follow-up, 353 patients experienced EVAR-related SAEs. In total, 1223 radiomics features were extracted from each patient, of which 23 radiomics features were finally preserved to identify different clinical phenotypes. 944 patients were allocated to the training set. Three clusters were identified in training set, in which patients had identical clinical characteristics and morphological features, while varied considerably of selected radiomics features. This encouraging performance was further approved in the test set. In addition, each cluster was well differentiated from other clusters and Kaplan-Meier analysis showed significant differences of freedom from SAEs rate between different clusters both in the training (p = .0216) and test sets (p = .0253). CONCLUSION: Based on radiomics, UML cluster analysis can identify clinical phenotypes in EVAR patients with distinct long-term outcomes.

7.
Heliyon ; 10(9): e30388, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756581

RESUMEN

Objective: This study aimed to investigate the mechanism of long noncoding ribonucleic acid (lncRNA) SNHG16 on kidney clear cell carcinoma (KIRC) cells by targeting miR-506-3p/ETS proto-oncogene 1, transcription factor (ETS1)/RAS/Extracellular regulated protein kinases (ERK) molecular axis, thus to provide reference for clinical diagnosis and treatment of KIRC in the future. Methods: Thirty-six patients with KIRC were enrolled in this study, and their carcinoma tissues and adjacent tissues were obtained for the detection of SNHG16/miR-506-3p/ETS1/RAS/ERK expression. Then, over-expressed SNHG16 plasmid and silenced plasmid were transfected into KIRC cells to observe the changes of their biological behavior. Results: SNHG16 and ETS1 were highly expressed while miR-506- 3p was low expressed in KIRC tissues; the RAS/ERK signaling pathway was significantly activated in KIRC tissues (P < 0.05). After SNHG16 silence, KIRC cells showed decreased proliferation, invasion and migration capabilities and increased apoptosis rate; correspondingly, increase in SNHG16 expression achieved opposite results (P < 0.05). Finally, in the rescue experiment, the effects of elevated SNHG16 on KIRC cells were reversed by simultaneous increase in miR-506-3p, and the effects of miR-506-3p were reversed by ETS1. Activation of the RAS/ERK pathway had the same effect as increase in ETS1, which further worsened the malignancy of KIRC. After miR-506-3p increase and ETS1 silence, the RAS/ERK signaling pathway was inhibited (P < 0.05). At last, the rescue experiment (co-transfection) confirmed that the effect of SNHG16 on KIRC cells is achieved via the miR-506-3p/ETS1/RAS/ERK molecular axis. Conclusion: SNHG16 regulates the biological behavior of KIRC cells by targeting the miR-506-3p/ETS1/RAS/ERK molecular axis.

8.
Chem Commun (Camb) ; 60(41): 5354-5368, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38690680

RESUMEN

Hydrogen peroxide (H2O2), an environmentally friendly strong oxidant and energy carrier, has attracted widespread attention in photocatalysis. Artificial photosynthesis of H2O2 using water and oxygen as raw materials, solar energy as an energy source, and semiconductor materials as catalysts is considered a promising technology. In the past few decades, encouraging progress has been made in the photocatalytic production of H2O2. Therefore, we summarize the research achievements in this field in recent years. This review first briefly introduces the reaction pathway, detection techniques and evaluation metrics. Then, the recent advances in photocatalysts are highlighted. Furthermore, the existing challenges and possible solutions in this field are presented. At last, we look forward to the future development direction of this field. This review provides valuable insights and guidance for efficient photocatalytic H2O2 production.

9.
J Environ Manage ; 359: 121045, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38703653

RESUMEN

A multifunctional Ag/AlOOH nanowires (ANW) composite substrate was constructed, which not only accomplishes highly sensitive detection of organic dye molecules, but also has excellent performance in the degradation of pollutants. The ANW in the Ag/ANW substrate possesses a high aspect ratio, which extends the distribution area of Ag and enables a large number of hot spots on the active substrate. Additionally, due to the abundant OH groups on the ANW, there is an increased number of anchor sites for adsorbed metal ions in the Ag/ANW compound, thus contributing to the enhancement and degradation of molecules. Moreover, the constructed multifunctional Ag/ANW nanocomplexes also show great promise for practical applications, providing a reference for the detection and degradation of contaminants.


Asunto(s)
Nanocables , Espectrometría Raman , Nanocables/química , Plata/química , Compuestos Orgánicos/química , Compuestos Orgánicos/análisis
10.
Small ; : e2311966, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770995

RESUMEN

Wood delignification and densification enable the production of high strength and/or transparent wood materials with exceptional properties. However, processing needs to be more sustainable and besides the chemical delignification treatments, energy intense hot-pressing calls for alternative approaches. Here, this study shows that additional softening of delignified wood via a mild swelling process using an ionic liquid-water mixture enables the densification of tube-line wood cells into layer-by-layer sheet structures without hot-pressing. The natural capillary force induces self-densification in a simple drying process resulting in a transparent wood film. The as-prepared films with ≈150 µm thickness possess an optical transmittance ≈70%, while maintaining optical haze >95%. Due to the densely packed sheet structure with a large interfacial area, the reassembled wood film is fivefold stronger and stiffer than the delignified wood in fiber direction. Owing to a low density, the specific tensile strength and elastic modulus are as high as 282 MPa cm3 g-1 and 31 GPa cm3 g-1. A facile and highly energy efficient wood nanotechnology approach are demonstrated toward more sustainable materials and processes by directly converting delignified wood into transparent wood omitting polymeric matrix infiltration or mechanical pressing.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124383, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38772177

RESUMEN

Recently, synthesized N-linked-disalicylaldehyde H2QJI probes have been used to detect heavy metal ions in the experiment conveniently. Nevertheless, there needs to be a more in-depth examination of the excited state intramolecular proton transfer (ESIPT) mechanism and photophysical properties of the probe. This work remedied it based on quantum chemistry calculations. We contained due hydrogen bond (O1-H2 ⋯ N3 and O4-H5 ⋯ O6) and then analyzed bond parameters, IR vibration spectra, and non-covalent interaction. The bond strength is enhanced under photoexcitation, and the former is significantly stronger. The calculated electron spectra are in agreement with the experimental values. The results of the S0 and S1 potential energy curves and IRC calculations also confirm the unique ESIPT behavior, which isan excited stated stepwise double proton transfer. The fluorescence, internal conversion, and intersystem crossing rate of KD molecules (twisted-, double proton transfer) were calculated respectively to reveal the radiative and non-radiative pathways. It proved that the corresponding spectra are not obtained since the electrons are mainly deactivated by the ISC (S1->T1). Furthermore, the interfragment charge transfer (IFCT) approach indicates that the molecule possesses twisted intramolecular charge transfer (TICT) characteristics, which lead to the quenching of fluorescence introduction.

12.
Nat Metab ; 6(5): 947-962, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38769396

RESUMEN

Polycystic ovary syndrome (PCOS), an endocrine disorder afflicting 6-20% of women of reproductive age globally, has been linked to alterations in the gut microbiome. We previously showed that in PCOS, elevation of Bacteroides vulgatus in the gut microbiome was associated with altered bile acid metabolism. Here we show that B. vulgatus also induces a PCOS-like phenotype in female mice via an alternate mechanism independent of bile acids. We find that B. vulgatus contributes to PCOS-like symptoms through its metabolite agmatine, which is derived from arginine by arginine decarboxylase. Mechanistically, agmatine activates the farnesoid X receptor (FXR) pathway to subsequently inhibit glucagon-like peptide-1 (GLP-1) secretion by L cells, which leads to insulin resistance and ovarian dysfunction. Critically, the GLP-1 receptor agonist liraglutide and the arginine decarboxylase inhibitor difluoromethylarginine ameliorate ovarian dysfunction in a PCOS-like mouse model. These findings reveal that agmatine-FXR-GLP-1 signalling contributes to ovarian dysfunction, presenting a potential therapeutic target for PCOS management.


Asunto(s)
Agmatina , Microbioma Gastrointestinal , Síndrome del Ovario Poliquístico , Receptores Citoplasmáticos y Nucleares , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Animales , Femenino , Ratones , Agmatina/farmacología , Agmatina/metabolismo , Agmatina/uso terapéutico , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Péptido 1 Similar al Glucagón/metabolismo , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Resistencia a la Insulina , Bacteroides/efectos de los fármacos , Humanos , Carboxiliasas/metabolismo
13.
Adv Mater ; 36(28): e2310619, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38718249

RESUMEN

The orthogonal structure of the widely used hole transporting material (HTM) 2,2',7,7'-tetrakis(N, N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) imparts isotropic conductivity and excellent film-forming capability. However, inherently weak intra- and inter-molecular π-π interactions result in low intrinsic hole mobility. Herein, a novel HTM, termed FTPE-ST, with a twist conjugated dibenzo(g,p)chrysene core and coplanar 3,4-ethylenedioxythiophene (EDOT) as extended donor units, is designed to enhance π-π interactions, without compromising on solubility. The three-dimensional (3D) configuration provides the material multi-direction charge transport as well as excellent solubility even in 2-methylanisole, and its large conjugated backbone endows the HTM with a high hole mobility. Moreover, the sulfur donors in EDOT units coordinate with lead ions on the perovskite surface, leading to stronger interfacial interactions and the suppression of defects at the perovskite/HTM interface. As a result, perovskite solar cells (PSCs) employing FTPE-ST achieve a champion power conversion efficiency (PCE) of 25.21% with excellent long-time stability, one of the highest PCEs for non-spiro HTMs in n-i-p PSCs. In addition, the excellent film-forming capacity of the HTM enables the fabrication of FTPE-ST-based large-scale PSCs (1.0 cm2) and modules (29.0 cm2), which achieve PCEs of 24.21% (certificated 24.17%) and 21.27%, respectively.

14.
J Am Chem Soc ; 146(15): 10498-10507, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38590084

RESUMEN

Metastable compounds have greatly expanded the synthesizable compositions of solid-state materials and have attracted enormous amounts of attention in recent years. Especially, mechanochemically enabled metastable materials synthesis has been very successful in realizing cation-disordered materials with highly simple crystal structures, such as rock salts. Application of the same strategy for other structural types, especially for non-close-packed structures, is peculiarly underexplored. Niobium tungsten oxides (NbWOs), a class of materials that have been under the spotlight because of their diverse structural varieties and promising electrochemical and thermoelectric properties, are ideally suited to fill such a knowledge gap. In this work, we develop a new series of metastable NbWOs and realize one with a fully cation-disordered structure. Furthermore, we find that metastable NbWOs transform to a cation-disordered cubic structure when applied as a Li-ion battery anode, highlighting an intriguing non-close-packed-close-packed conversion process, as evidenced in various physicochemical characterizations, in terms of diffraction, electronic, and vibrational structures. Finally, by comparing the cation-disordered NbWO with other trending cation-disordered oxides, we raise a few key structural features for cation disorder and suggest a few possible research opportunities for this field.

15.
ACS Appl Mater Interfaces ; 16(17): 22025-22034, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634322

RESUMEN

Manipulation of selectivity in the catalytic electrochemical carbon dioxide reduction reaction (eCO2RR) poses significant challenges due to inevitable structure reconstruction. One approach is to develop effective strategies for controlling reaction pathways to gain a deeper understanding of mechanisms in robust CO2RR systems. In this work, by precise introduction of 1,10-phenanthroline as a bidentate ligand modulator, the electronic property of the copper site was effectively regulated, thereby directing selectivity switch. By modification of [Cu3(btec)(OH)2]n, the use of [Cu2(btec)(phen)2]n·(H2O)n achieved the selectivity switch from ethylene (faradaic efficiency (FE) = 41%, FEC2+ = 67%) to methane (FECH4 = 69%). Various in situ spectroscopic characterizations revealed that [Cu2(btec)(phen)2]n·(H2O)n promoted the hydrogenation of *CO intermediates, leading to methane generation instead of dimerization to form C2+ products. Acting as a delocalized π-conjugation scaffold, 1,10-phenanthroline in [Cu2(btec)(phen)2]n·(H2O)n helps stabilize Cuδ+. This work presents a novel approach to regulate the coordination environment of active sites with the aim of selectively modulating the CO2RR.

16.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653239

RESUMEN

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Asunto(s)
Akkermansia , Bacteroides , Ácidos y Sales Biliares , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Simbiosis , Animales , Humanos , Masculino , Ratones , Akkermansia/metabolismo , Bacteroides/metabolismo , beta-Lactamasas/metabolismo , Ácidos y Sales Biliares/metabolismo , Vías Biosintéticas/genética , Hígado Graso/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Verrucomicrobia/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología
17.
Chem Commun (Camb) ; 60(36): 4801-4804, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38602367

RESUMEN

Piezocatalysis is a direct method for converting mechanical vibration into chemical energy. Herein, NiTiO3 is used in the piezocatalytic hydrogen evolution field for the first time. The noncentral symmetry of NiTiO3 is enhanced by doping with large radius elements. It is demonstrated that when a metal element replaces the sites of nickel, it results in lattice distortion and a higher piezoelectric response. In particular, Cd-doped NiTiO3 exhibits the highest H2 generation rate (1.52 mmol g-1 h-1), which is 13 times that of original NiTiO3.

18.
Chem Biol Drug Des ; 103(4): e14519, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570708

RESUMEN

Kaempferol (KPR), a flavonoid compound found in various plants and foods, has garnered attention for its anti-inflammatory, antioxidant, and anticancer properties. In preliminary studies, KPR can modulate several signaling pathways involved in inflammation, making it a candidate for treating cholecystitis. This study aimed to explore the effects and mechanisms of KPR on lipopolysaccharide (LPS)-induced human gallbladder epithelial cells (HGBECs). To assess the impact of KPR on HGBECs, the HGBECs were divided into control, KPR, LPS, LPS + KPR, and LPS + UDCA groups. Cell viability and cytotoxicity were evaluated by MTT assay and lactate dehydrogenase (LDH) assay, respectively, and concentrations of KPR (10-200 µM) were tested. LPS-induced inflammatory responses in HGBECs were to create an in vitro model of cholecystitis. The key inflammatory markers (IL-1ß, IL-6, and TNF-α) levels were quantified using ELISA, The modulation of the MAPK/NF-κB signaling pathway was measured by western blot using specific antibodies against pathway components (p-IκBα, IκBα, p-p65, p65, p-JNK, JNK, p-ERK, ERK, p-p38, and p38). The cell viability and LDH levels in HGBECs were not significantly affected by 50 µM KPR, thus it was selected as the optimal KPR intervention concentration. KPR increased the viability of LPS-induced HGBECs. Additionally, KPR inhibited the inflammatory factors level (IL-1ß, IL-6, and TNF-α) and protein expression (iNOS and COX-2) in LPS-induced HGBECs. Furthermore, KPR reversed LPS-induced elevation of p-IκBα/IκBα, p-p65/p65, p-JNK/JNK, p-ERK/ERK, and p-p38/p38 ratios. KPR attenuates the LPS-induced inflammatory response in HGBECs, possibly by inhibiting MAPK/NF-κB signaling.


Asunto(s)
Colecistitis , FN-kappa B , Humanos , FN-kappa B/metabolismo , Lipopolisacáridos/toxicidad , Inhibidor NF-kappaB alfa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Quempferoles/farmacología , Transducción de Señal , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Células Epiteliales/metabolismo , Sistema de Señalización de MAP Quinasas
19.
Front Pharmacol ; 15: 1295356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515837

RESUMEN

Hyperglycemia in pregnancy can increase the risk of congenital disorders, but little is known about craniofacial skeleton malformation and its corresponding medication. Our study first used meta-analysis to review the previous findings. Second, baicalin, an antioxidant, was chosen to counteract high glucose-induced craniofacial skeleton malformation. Its effectiveness was then tested by exposing chicken embryos to a combination of high glucose (HG, 50 mM) and 6 µM baicalin. Third, whole-mount immunofluorescence staining and in situ hybridization revealed that baicalin administration could reverse HG-inhibited neural crest cells (NCC) delamination and migration through upregulating the expression of Pax7 and Foxd3, and mitigate the disordered epithelial-mesenchymal transition (EMT) process by regulating corresponding adhesion molecules and transcription factors (i.e., E-cadherin, N-cadherin, Cadherin 6B, Slug and Msx1). Finally, through bioinformatic analysis and cellular thermal shift assay, we identified the AKR1B1 gene as a potential target. In summary, these findings suggest that baicalin could be used as a therapeutic agent for high glucose-induced craniofacial skeleton malformation.

20.
Huan Jing Ke Xue ; 45(2): 1058-1068, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471943

RESUMEN

In order to explore the characteristics and sources of heavy metal pollution in cultivated soil around a red mud yard in Chongqing, the content and spatial distribution characteristics of eight heavy metal elements (Cd, Cr, Hg, Ni, Pb, As, Cu, and Zn) in the soil were analyzed, and the single factor pollution index method and Nemerow comprehensive pollution index method were used to evaluate the characteristics of heavy metal pollution in soil. On the basis of correlation analysis, the APCS-MLR and PMF models were used to quantitatively analyze the sources of heavy metals. The results showed that the average contents of the other seven heavy metal elements were higher than the background values of Chongqing soil, except for that of Cr. The heavy metals Cd, Hg, and As were moderately polluted, and Pb, Cu, Ni, and Zn were mildly polluted. The spatial distribution pattern of Cr, Ni, Pb, Cu, and Zn in the soil was similar, and there was a very significant positive correlation between them (P < 0.01). The spatial distribution characteristics of Cd, Hg, and As were significantly different, and there was no significant correlation between them (P > 0.05). The source apportionment showed that the sources of heavy metals in the soil in the study area were relatively complex, and the APCS-MLR and PMF models could identify the same four pollution sources, namely red mud yard percolation emission and natural sources, thermal power generation emission sources, agricultural activities and natural sources, and non-ferrous metal smelting emission sources. There was little difference in the results of source apportionment between the two models. The contribution rates of the four pollution sources in the APCS-MLR model were 51.8%, 18.0%, 15.9%, and 14.3%, respectively, whereas those in the PMF model were 45.9%, 12.8%, 21.5%, and 19.8%, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...