Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(15): 6023-6032, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37026997

RESUMEN

Effect-based methods (EBM) have great potential for water quality monitoring as they can detect the mixture effects of all active known and unknown chemicals in a sample, which cannot be addressed by chemical analysis alone. To date, EBM have primarily been applied in a research context, with a lower level of uptake by the water sector and regulators. This is partly due to concerns regarding the reliability and interpretation of EBM. Using evidence from the peer-reviewed literature, this work aims to answer frequently asked questions about EBM. The questions were identified through consultation with the water industry and regulators and cover topics related to the basis for using EBM, practical considerations regarding reliability, sampling for EBM and quality control, and what to do with the information provided by EBM. The information provided in this work aims to give confidence to regulators and the water sector to stimulate the application of EBM for water quality monitoring.


Asunto(s)
Personal Administrativo , Política Ambiental , Calidad del Agua , Humanos , Reproducibilidad de los Resultados , Monitoreo del Ambiente
3.
Sci Total Environ ; 795: 148776, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34328937

RESUMEN

Monitoring of chemicals in the aquatic environment by chemical analysis alone cannot completely assess and predict the effects of chemicals on aquatic species and ecosystems. This is primarily because of the increasing number of (unknown) chemical stressors and mixture effects present in the environment. In addition, the ability of ecological indices to identify underlying stressors causing negative ecological effects is limited. Therefore, additional complementary methods are needed that can address the biological effects in a direct manner and provide a link to chemical exposure, i.e. (eco)toxicological tests. (Eco)toxicological tests are defined as test systems that expose biological components (cells, individuals, populations, communities) to (environmental mixtures of) chemicals to register biological effects. These tests measure responses at the sub-organismal (biomarkers and in vitro bioassays), whole-organismal, population, or community level. We performed a literature search to obtain a state-of-the-art overview of ecotoxicological tests available for assessing impacts of chemicals to aquatic biota and to reveal datagaps. In total, we included 509 biomarkers, 207 in vitro bioassays, 422 tests measuring biological effects at the whole-organismal level, and 78 tests at the population- community- and ecosystem-level. Tests at the whole-organismal level and biomarkers were most abundant for invertebrates and fish, whilst in vitro bioassays are mostly based on mammalian cell lines. Tests at the community- and ecosystem-level were almost missing for organisms other than microorganisms and algae. In addition, we provide an overview of the various extrapolation challenges faced in using data from these tests and suggest some forward looking perspectives. Although extrapolating the measured responses to relevant protection goals remains challenging, the combination of ecotoxicological experiments and models is key for a more comprehensive assessment of the effects of chemical stressors to aquatic ecosystems.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Animales , Ecotoxicología , Monitoreo del Ambiente , Peces , Humanos , Invertebrados , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
4.
Sci Total Environ ; 794: 148727, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34323756

RESUMEN

There is public and scientific concern about air, soil and water contamination and possible adverse environmental and human health effects as a result of hydraulic fracturing activities. The use of greener chemicals in fracturing fluid aims to mitigate these effects. This study compares fracturing fluids marketed as either 'conventional' or 'green', as assessed by their chemical composition and their toxicity in bioassays. Chemical composition was analysed via non-target screening using liquid chromatography - high resolution mass spectrometry, while toxicity was evaluated by the Ames fluctuation test to assess mutagenicity and CALUX reporter gene assays to determine specific toxicity. Overall, the results do not indicate that the 'green' fluids are less harmful than the 'conventional' ones. First, there is no clear indication that the selected green fluids contain chemicals present at lower concentrations than the selected conventional fluids. Second, the predicted environmental fate of the identified compounds does not seem to be clearly distinct between the 'green' and 'conventional' fluids, based on the available data for the top five chemicals based on signal intensity that were tentatively identified. Furthermore, Ames fluctuation test results indicate that the green fluids have a similar genotoxic potential than the conventional fluids. Results of the CALUX reporter gene assays add to the evidence that there is no clear difference between the green and conventional fluids. These results do not support the claim that currently available and tested green-labeled fracturing fluids are environmentally more friendly alternatives to conventional fracturing fluids.


Asunto(s)
Fracking Hidráulico , Bioensayo , Cromatografía Liquida , Humanos , Contaminación del Agua
5.
Water Res ; 193: 116859, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33540341

RESUMEN

Bioassays are increasingly being implemented for water quality monitoring as targeted chemical analyses are not always sufficient for the detection of all emerging chemicals or transformation products. However, the interpretation of bioassay results remains challenging, in particular because a positive response does not necessarily indicate that there may be an increased risk. For this purpose, effect-based trigger (EBT) values have been introduced as thresholds above which action needs to be undertaken to determine the cause of the response. The goals of this study were to (i) evaluate various approaches used to determine EBT values and (ii) based on the findings, derive human health EBT values for Chemical Activated LUciferase gene eXpression (CALUX) in vitro bioassays used for routine monitoring of water quality in the Netherlands. Finally, (iii) an uncertainty analysis was carried out to determine the protective power of the derived EBT values and the chance that potentially harmful substances might not be detected. EBT values that can be implemented in routine monitoring could be determined for four of eight selected bioassays. These EBT were compared to bioassay results from routine water quality monitoring carried out in the Netherlands. Furthermore, a framework for the calculation and evaluation of derived EBT values for routine application to monitor drinking water and its sources is proposed.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Bioensayo , Monitoreo del Ambiente , Humanos , Países Bajos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Calidad del Agua
6.
Water Res ; 194: 116911, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33607390

RESUMEN

The uncertainties on the occurrence, fate and hazard of Contaminants of Emerging Concern (CECs) increasingly challenge drinking water (DW) utilities whether additional measures should be taken to reduce the health risk. This has led to the development and evaluation of risk-based approaches by the scientific community. DW guideline values are commonly derived based on deterministic chemical risk assessment (CRA). Here, we propose a new probabilistic procedure, that is a quantitative chemical risk assessment (QCRA), to assess potential health risk related to the occurrence of CECs in DW. The QCRA includes uncertainties in risk calculation in both exposure and hazard assessments. To quantify the health risk in terms of the benchmark quotient probabilistic distribution, the QCRA estimates the probabilistic distribution of CECs concentration in DW based on their concentration in source water and simulating the breakthrough curves of a granular activated carbon (GAC) treatment process. The model inputs and output uncertainties were evaluated by sensitivity and uncertainty analyses for each step of the risk assessment to identify the most relevant factors affecting risk estimation. Dominant factors resulted to be the concentration of CECs in water sources, GAC isotherm parameters and toxicological data. To stress the potential of this new QCRA approach, several case studies are considered with focus on bisphenol A as an example CEC and various GAC management options. QCRA quantifies the probabilistic risk, providing more insight compared to CRA. QCRA proved to be more effective in supporting the intervention prioritization for treatment optimization to pursue health risk minimization.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Carbón Orgánico , Monitoreo del Ambiente , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
7.
Sci Total Environ ; 705: 135779, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31818566

RESUMEN

The ever-increasing production and use of chemicals lead to the occurrence of organic micro-pollutants (OMPs) in drinking water sources, and consequently the need for their removal during drinking water treatment. Due to the sheer number of OMPs, monitoring using targeted chemical analyses alone is not sufficient to assess drinking water quality as well as changes thereof during treatment. High-resolution mass spectrometry (HRMS) based non-target screening (NTS) as well as effect-based monitoring using bioassays are promising monitoring tools for a more complete assessment of water quality and treatment performance. Here, we developed a strategy that integrates data from chemical target analyses, NTS and bioassays. We applied it to the assessment of OMP related water quality changes at three drinking water treatment pilot installations. These installations included advanced oxidation processes, ultrafiltration in combination with reverse osmosis, and granular activated carbon filtration. OMPs relevant for the drinking water sector were spiked into the water treated in these installations. Target analyses, NTS and bioassays were performed on samples from all three installations. The NTS data was screened for predicted and known transformation products of the spike-in compounds. In parallel, trend profiles of NTS features were evaluated using multivariate analysis methods. Through integration of the chemical data with the biological effect-based results potential toxicity was accounted for during prioritization. Together, the synergy of the three analytical methods allowed the monitoring of OMPs and transformation products, as well as the integrative biological effects of the mixture of chemicals. Through efficient analysis, visualization and interpretation of complex data, the developed strategy enabled to assess water quality and the impact of water treatment from multiple perspectives. Such information could not be obtained by any of the three methods alone. The developed strategy thereby provides drinking water companies with an integrative tool for comprehensive water quality assessment.


Asunto(s)
Agua Potable , Purificación del Agua , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Contaminantes Químicos del Agua , Calidad del Agua
8.
J Hazard Mater ; 364: 332-338, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30384243

RESUMEN

Advancements in high-resolution mass spectrometry based methods have enabled a shift from pure target analysis to target, suspect and non-target screening analyses to detect chemicals in water samples. The multitude of suspect chemicals thereby detected needs to be prioritized for further identification, prior to health risk assessment and potential inclusion into monitoring programs. Here, we compare prioritization of chemicals in Dutch water samples based on relative intensities only to prioritization including hazard information based on high-throughput in vitro toxicity data. Over 1000 suspects detected in sewage treatment plant effluent, surface water, groundwater and drinking water samples were ranked based on their relative intensities. Toxicity data availability and density in the ToxCast database were determined and visualized for these suspects, also in regard to water relevant mechanisms of toxicity. More than 500 suspects could be ranked using occurrence/hazard ratios based on more than 1000 different assay endpoints. The comparison showed that different prioritization strategies resulted in significantly different ranking, with only 2 suspects prioritized based on occurrence among the top 20 in the hazard ranking. We therefore propose a novel scheme that integrates both exposure and hazard data, and efficiently prioritizes which features need to be confidently identified first.


Asunto(s)
Medición de Riesgo/métodos , Contaminantes Químicos del Agua/clasificación , Bases de Datos Factuales , Agua Potable , Agua Subterránea , Humanos , Espectrometría de Masas , Aguas del Alcantarillado , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
9.
Chemosphere ; 209: 373-380, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29935466

RESUMEN

The present study explores the ToxCast/Tox21 database to select candidate bioassays as bioanalytical tools for measuring groups of chemicals in water. To this aim, the ToxCast/Tox21 database was explored for bioassays that detect polycyclic aromatic hydrocarbons (PAHs), aromatic amines (AAs), (chloro)phenols ((C)Ps) and halogenated aliphatic hydrocarbons (HAliHs), which are included in the European and/or Dutch Drinking Water Directives. Based on the analysis of the availability and performance of bioassays included in the database, we concluded that several bioassays are suitable as bioanalytical tools for assessing the presence of PAHs and (C)Ps in drinking water sources. No bioassays were identified for AAs and HAliHs, due to the limited activity of these chemicals and/or the limited amount of data on these chemicals in the database. A series of bioassays was selected that measure molecular or cellular effects that are covered by bioassays currently in use for chemical water quality monitoring. Interestingly, also bioassays were selected that represent molecular or cellular effects that are not covered by bioassays currently applied. The usefulness of these newly identified bioassays as bioanalytical tools should be further evaluated in follow-up studies. Altogether, this study shows how exploration of the ToxCast/Tox21 database provides a series of candidate bioassays as bioanalytical tools for measuring groups of chemicals in water. This assessment can be performed for any group of chemicals of interest (if represented in the database), and may provide candidate bioassays that can be used to complement the currently applied bioassays for chemical water quality assessment.


Asunto(s)
Bioensayo/métodos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/química , Calidad del Agua , Agua/química
10.
Neurotoxicology ; 57: 194-202, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27720795

RESUMEN

There is an increasing demand for in vitro test systems to detect neurotoxicity for use in chemical risk assessment. In this study, we evaluated the applicability of rat primary cortical cultures grown on multi-well micro-electrode arrays (mwMEAs) to detect effects of chronic 14-day exposure to structurally different insecticides or methylmercury on neuronal activity (mean spike rate; MSR). Effects of chronic exposure to α-cypermethrin, endosulfan, carbaryl, chlorpyrifos(-oxon), methylmercury or solvent control [14days exposure, initiated after baseline recording at day in vitro (DIV)7] were studied in five successive recordings between DIV10 and DIV21. The results were compared to effects of acute exposure to these same compounds (activity recorded immediately after the start of exposure after baseline recording at DIV10-11). Chronic 14-day exposure to methylmercury, chlorpyrifos and α-cypermethrin inhibited MSR, all with a lowest-observed effect concentration (LOEC) of 0.1µM, while exposure to endosulfan increased MSR [LOEC: 1µM]. No significant effects were observed for chlorpyrifos-oxon and carbaryl. Similar to the observations in the chronic 14-day exposure studies, MSR was inhibited by acute 30-min exposure to methylmercury, chlorpyrifos, and α-cypermethrin [LOECs: 1µM, 10µM, and 1µM, respectively], whereas endosulfan increased MSR [LOEC: 0.3µM]. While not observed in the chronic 14-day exposure study, acute exposure to chlorpyrifos-oxon and carbaryl resulted in inhibition of MSR [LOECs: 10µM, and100 µM, respectively]. Effects on median interspike intervals (mISI; a measure for neuronal firing pattern) were not detected following chronic 14-day or acute 30-min exposure, except for increased mISI at acute chlorpyrifos and α-cypermethrin exposures at concentrations that also inhibited MSR. These data indicate that the effects of chronic 14-day exposures to methylmercury and insecticides at low concentrations on spontaneous neuronal activity in vitro can be predicted in rapid acute screening studies using mwMEAs.


Asunto(s)
Corteza Cerebral/citología , Neuronas/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Insecticidas/farmacología , Compuestos de Metilmercurio/farmacología , Ratas , Ratas Wistar , Factores de Tiempo
11.
Toxicol Sci ; 153(2): 215-24, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27672163

RESUMEN

At present, human risk assessment of the structurally similar non-dioxin-like (NDL) PCBs and polybrominated diphenylethers (PBDEs) is done independently for both groups of compounds. There are however obvious similarities between NDL-PCBs and PBDEs with regard to modulation of the intracellular calcium homeostasis (basal calcium levels, voltage-gated calcium channels, calcium uptake, ryanodine receptor) and thyroid hormone (TH) homeostasis (TH levels and transport). which are mechanisms of action related to neurobehavioral effects (spontaneous activity, habituation and learning ability). There also similarities in agonistic interactions with the hepatic nuclear receptors PXR and CAR. Several effects on developmental (reproductive) processes have also been observed, but results were more dispersed and insufficient to compare both groups of compounds. The available mechanistic information is sufficient to warrant a dose addition model for NDL-PCBs and PBDEs, including their hydroxylated metabolites.Although many of the observed effects are similar from a qualitative point of view for both groups, congener or tissue specific differences have also been found. As this is a source of uncertainty in the combined hazard and risk assessment of these compounds, molecular entities involved in the observed mechanisms and adverse outcomes associated with these compounds need to be identified. The systematical generation of (quantitative) structure-activity information for NDL-PCBs and PBDEs on these targets (including potential non-additive effects) will allow a more realistic risk estimation associated with combined exposure to both groups of compounds during early life. Additional validation studies are needed to quantify these uncertainties for risk assessment of NDL-PCBs and PBDEs.


Asunto(s)
Éteres Difenilos Halogenados/toxicidad , Bifenilos Policlorados/toxicidad , Calcio/metabolismo , Éteres Difenilos Halogenados/química , Homeostasis , Humanos , Bifenilos Policlorados/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Medición de Riesgo , Hormonas Tiroideas/metabolismo , Incertidumbre
12.
Toxicol Sci ; 147(2): 607-17, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26187449

RESUMEN

We previously demonstrated that acute inhibition of voltage-gated calcium channels (VGCCs) is a common mode of action for (sub)micromolar concentrations of chemicals, including insecticides. However, because human exposure to chemicals is usually chronic and repeated, we investigated if selected insecticides from different chemical classes (organochlorines, organophosphates, pyrethroids, carbamates, and neonicotinoids) also disturb calcium homeostasis after subchronic (24 h) exposure and after a subsequent (repeated) acute exposure. Effects on calcium homeostasis were investigated with single-cell fluorescence (Fura-2) imaging of PC12 cells. Cells were depolarized with high-K(+) saline to study effects of subchronic or repeated exposure on VGCC-mediated Ca(2+) influx. The results demonstrate that except for carbaryl and imidacloprid, all selected insecticides inhibited depolarization (K(+))-evoked Ca(2+) influx after subchronic exposure (IC50's: approximately 1-10 µM) in PC12 cells. These inhibitory effects were not or only slowly reversible. Moreover, repeated exposure augmented the inhibition of the K(+)-evoked increase in intracellular calcium concentration induced by subchronic exposure to cypermethrin, chlorpyrifos, chlorpyrifos-oxon, and endosulfan (IC50's: approximately 0.1-4 µM). In rat primary cortical cultures, acute and repeated chlorpyrifos exposure also augmented inhibition of VGCCs compared with subchronic exposure. In conclusion, compared with subchronic exposure, repeated exposure increases the potency of insecticides to inhibit VGCCs. However, the potency of insecticides to inhibit VGCCs upon repeated exposure was comparable with the inhibition previously observed following acute exposure, with the exception of chlorpyrifos. The data suggest that an acute exposure paradigm is sufficient for screening chemicals for effects on VGCCs and that PC12 cells are a sensitive model for detection of effects on VGCCs.


Asunto(s)
Bloqueadores de los Canales de Calcio/toxicidad , Insecticidas/toxicidad , Potenciales de Acción/efectos de los fármacos , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/administración & dosificación , Canales de Calcio/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Insecticidas/administración & dosificación , Células PC12/efectos de los fármacos , Ratas , Ratas Wistar , Pruebas de Toxicidad Subcrónica/métodos
13.
Arch Toxicol ; 89(12): 2345-54, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25253649

RESUMEN

Brominated flame retardants such as tetrabromobisphenol-A (TBBPA) may exert (developmental) neurotoxic effects. However, data on (neuro)toxicity of halogen-free flame retardants (HFFRs) are scarce. Recent in vitro studies indicated a high neurotoxic potential for some HFFRs, e.g., zinc stannate (ZS), whereas the neurotoxic potential of other HFFRs, such as aluminum diethylphosphinate (Alpi), appears low. However, the in vivo (neuro)toxicity of these compounds is largely unknown. We therefore investigated effects of neonatal exposure to TBBPA, Alpi or ZS on synaptic plasticity in mouse hippocampus. Male C57bl/6 mice received a single oral dose of 211 µmol/kg bw TBBPA, Alpi or ZS on postnatal day (PND) 10. On PND 17-19, effects on hippocampal synaptic plasticity were investigated using ex vivo extracellular field recordings. Additionally, we measured levels of postsynaptic proteins involved in long-term potentiation (LTP) as well as flame retardant concentrations in brain, muscle and liver tissues. All three flame retardants induced minor, but insignificant, effects on LTP. Additionally, TBBPA induced a minor decrease in post-tetanic potentiation. Despite these minor effects, expression of selected synaptic proteins involved in LTP was not affected. The flame retardants could not be measured in significant amounts in the brains, suggesting low bioavailability and/or rapid elimination/metabolism. We therefore conclude that a single neonatal exposure on PND 10 to TBBPA, Alpi or ZS does affect neurodevelopment and synaptic plasticity only to a small extent in mice. Additional data, in particular on persistence, bioaccumulation and (in vivo) toxicity, following prolonged (developmental) exposure are required for further (human) risk assessment.


Asunto(s)
Retardadores de Llama/toxicidad , Potenciación a Largo Plazo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Factores de Edad , Aluminio/farmacología , Aluminio/toxicidad , Animales , Animales Recién Nacidos , Disponibilidad Biológica , Retardadores de Llama/farmacocinética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Síndromes de Neurotoxicidad/fisiopatología , Compuestos Organofosforados/farmacología , Compuestos Organofosforados/toxicidad , Bifenilos Polibrominados/farmacocinética , Bifenilos Polibrominados/toxicidad , Compuestos de Estaño/farmacocinética , Compuestos de Estaño/toxicidad , Distribución Tisular
14.
Toxicol Sci ; 141(1): 103-11, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24913802

RESUMEN

Humans are exposed to distinct structural classes of insecticides with different neurotoxic modes of action. Because calcium homeostasis is essential for proper neuronal function and development, we investigated the effects of insecticides from different classes (pyrethroid: (α-)cypermethrin; organophosphate: chlorpyrifos; organochlorine: endosulfan; neonicotinoid: imidacloprid) and mixtures thereof on the intracellular calcium concentration ([Ca(2+)]i). Effects of acute (20 min) exposure to (mixtures of) insecticides on basal and depolarization-evoked [Ca(2+)]i were studied in vitro with Fura-2-loaded PC12 cells and high resolution single-cell fluorescence microscopy. The data demonstrate that cypermethrin, α-cypermethrin, endosulfan, and chlorpyrifos concentration-dependently decreased depolarization-evoked [Ca(2+)]i, with 50% (IC50) at 78nM, 239nM, 250nM, and 899nM, respectively. Additionally, acute exposure to chlorpyrifos or endosulfan (10µM) induced a modest increase in basal [Ca(2+)]i, amounting to 68 ± 8nM and 53 ± 8nM, respectively. Imidacloprid did not disturb basal or depolarization-evoked [Ca(2+)]i at 10µM. Following exposure to binary mixtures, effects on depolarization-evoked [Ca(2+)]i were within the expected effect additivity range, whereas the effect of the tertiary mixture was less than this expected additivity effect range. These results demonstrate that different types of insecticides inhibit depolarization-evoked [Ca(2+)]i in PC12 cells by inhibiting voltage-gated calcium channels (VGCCs) in vitro at concentrations comparable with human occupational exposure levels. Moreover, the effective concentrations in this study are below those for earlier described modes of action. Because inhibition of VGCCs appears to be a common and potentially additive mode of action of several classes of insecticides, this target should be considered in neurotoxicity risk assessment studies.


Asunto(s)
Bloqueadores de los Canales de Calcio/toxicidad , Canales de Calcio/metabolismo , Calcio/metabolismo , Contaminantes Ambientales/toxicidad , Insecticidas/toxicidad , Animales , Bloqueadores de los Canales de Calcio/química , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Contaminantes Ambientales/química , Humanos , Insecticidas/química , Síndromes de Neurotoxicidad/metabolismo , Células PC12 , Ratas , Relación Estructura-Actividad
15.
Arch Toxicol ; 88(8): 1537-48, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24599297

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are bioaccumulating flame retardants found in rising concentrations in human tissue. Epidemiological and animal studies have raised concern for their potential to induce developmental neurotoxicity (DNT). Considering the essential role of calcium homeostasis in neurodevelopment, PBDE-induced disturbance of intracellular calcium concentration ([Ca(2+)]i) may underlie PBDE-induced DNT. To test this hypothesis, we investigated acute effects of BDE-47 and 6-OH-BDE-47 on [Ca(2+)]i in human neural progenitor cells (hNPCs) and unraveled involved signaling pathways. Short-time differentiated hNPCs were exposed to BDE-47, 6-OH-BDE-47, and multiple inhibitors/stimulators of presumably involved signaling pathways to determine possible effects on [Ca(2+)]i by single-cell microscopy with the fluorescent dye Fura-2. Initial characterization of calcium signaling pathways confirmed the early developmental stage of hNPCs. In these cells, BDE-47 (2 µM) and 6-OH-BDE-47 (0.2 µM) induce [Ca(2+)]i transients. This increase in [Ca(2+)]i is due to extracellular Ca(2+) influx and intracellular release of Ca(2+), mainly from the endoplasmic reticulum (ER). While extracellular Ca(2+) seems to enter the cytoplasm upon 6-OH-BDE-47 by interfering with the cell membrane and independent of Ca(2+) ion channels, ER-derived Ca(2+) is released following activation of protein lipase C and inositol 1,4,5-trisphosphate receptor, but independently of ryanodine receptors. These findings illustrate that immature developing hNPCs respond to low concentrations of 6-OH-BDE-47 by an increase in [Ca(2+)]i and provide new mechanistic explanations for such BDE-induced calcium disruption. Thus, these data support the possibility of a critical window of PBDE exposure, i.e., early human brain development, which has to be acknowledged in risk assessment.


Asunto(s)
Calcio/metabolismo , Células Madre Fetales/efectos de los fármacos , Éteres Difenilos Halogenados/toxicidad , Homeostasis/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Bifenilos Polibrominados/toxicidad , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Células Cultivadas , Células Madre Fetales/metabolismo , Edad Gestacional , Homeostasis/fisiología , Humanos , Potenciales de la Membrana/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Técnicas de Placa-Clamp , Cultivo Primario de Células
16.
Toxicol Sci ; 137(2): 428-35, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24241723

RESUMEN

In vitro methods for developmental neurotoxicity (DNT) testing have the potential to reduce animal use and increase insight into cellular and molecular mechanisms underlying chemical-induced alterations in the development of functional neuronal networks. Mouse neural progenitor cells (mNPCs) differentiate into nervous system-specific cell types and have proven valuable to detect DNT using biochemical and morphological techniques. We therefore investigated a number of functional neuronal parameters in primary mNPCs to explore their applicability for neurophysiological in vitro DNT testing. Immunocytochemistry confirmed that mNPCs express neuronal, glial, and progenitor markers at various differentiation durations (1, 7, 14, and 21 days). Because intracellular calcium ([Ca(2+)]i) plays an essential role in neuronal development and function, we measured stimulus-evoked changes in [Ca(2+)]i at these differentiation durations using the Ca(2+)-responsive dye Fura-2. Increases in [Ca(2+)]i (averages ranging from 65 to 226 nM) were evoked by depolarization, ATP, l-glutamic acid, acetylcholine, and dopamine (up to 87%, 57%, 93%, 28%, and 37% responding cells, respectively) and to a lesser extent by serotonin and gamma-aminobutyric acid (both up to 10% responding cells). Notably, the changes in percentage of responsive cells and their response amplitudes over time indicate changes in the expression and functionality of the respective neurotransmitter receptors and related calcium signaling pathways during in vitro differentiation. The development of functional intercellular signaling pathways was confirmed using multielectrode arrays, demonstrating that mNPCs develop electrical activity within 1-2 weeks of differentiation (55% active wells at 14 days of differentiation; mean spike rate of 1.16 spikes/s/electrode). The combined data demonstrate that mNPCs develop functional neuronal characteristics in vitro, making it a promising model to study chemical-induced effects on the development of neuronal function.


Asunto(s)
Alternativas al Uso de Animales , Calcio/metabolismo , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Potenciales Evocados , Neuronas/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Potenciales Evocados/efectos de los fármacos , Inmunohistoquímica , Ratones , Microelectrodos , Neuronas/citología , Neuronas/efectos de los fármacos , Neurotransmisores/farmacología
17.
Toxicol In Vitro ; 27(4): 1320-46, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23453986

RESUMEN

The thyroid hormone (TH) system is involved in several important physiological processes, including regulation of energy metabolism, growth and differentiation, development and maintenance of brain function, thermo-regulation, osmo-regulation, and axis of regulation of other endocrine systems, sexual behaviour and fertility and cardiovascular function. Therefore, concern about TH disruption (THD) has resulted in strategies being developed to identify THD chemicals (THDCs). Information on potential of chemicals causing THD is typically derived from animal studies. For the majority of chemicals, however, this information is either limited or unavailable. It is also unlikely that animal experiments will be performed for all THD relevant chemicals in the near future for ethical, financial and practical reasons. In addition, typical animal experiments often do not provide information on the mechanism of action of THDC, making it harder to extrapolate results across species. Relevant effects may not be identified in animal studies when the effects are delayed, life stage specific, not assessed by the experimental paradigm (e.g., behaviour) or only occur when an organism has to adapt to environmental factors by modulating TH levels. Therefore, in vitro and in silico alternatives to identify THDC and quantify their potency are needed. THDC have many potential mechanisms of action, including altered hormone production, transport, metabolism, receptor activation and disruption of several feed-back mechanisms. In vitro assays are available for many of these endpoints, and the application of modern '-omics' technologies, applicable for in vivo studies can help to reveal relevant and possibly new endpoints for inclusion in a targeted THDC in vitro test battery. Within the framework of the ASAT initiative (Assuring Safety without Animal Testing), an international group consisting of experts in the areas of thyroid endocrinology, toxicology of endocrine disruption, neurotoxicology, high-throughput screening, computational biology, and regulatory affairs has reviewed the state of science for (1) known mechanisms for THD plus examples of THDC; (2) in vitro THD tests currently available or under development related to these mechanisms; and (3) in silico methods for estimating the blood levels of THDC. Based on this scientific review, the panel has recommended a battery of test methods to be able to classify chemicals as of less or high concern for further hazard and risk assessment for THD. In addition, research gaps and needs are identified to be able to optimize and validate the targeted THD in vitro test battery for a mechanism-based strategy for a decision to opt out or to proceed with further testing for THD.


Asunto(s)
Disruptores Endocrinos/toxicidad , Hormonas Tiroideas/metabolismo , Animales , Bioensayo , Humanos , Modelos Biológicos
18.
Toxicol Sci ; 132(1): 1-7, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22961093

RESUMEN

Classical cases of developmental neurotoxicity (DNT) in humans and advances in risk assessment methods did not prevent the emergence of new chemicals with (suspected) DNT potential. Exposure to these chemicals may be related to the increased worldwide incidence of learning and neurodevelopmental disorders in children. DNT is often investigated in a traditional manner (in vivo using large numbers of experimental animals), whereas development of in vitro methods for DNT reduces animal use and increases insight into cellular and molecular mechanisms of DNT. Several essential neurodevelopmental processes, including proliferation, migration, differentiation, formation of axons and dendrites, synaptogenesis, and apoptosis, are already being evaluated in vitro using biochemical and morphological endpoints. Yet, investigation of chemical-induced effects on the development of functional neuronal networks, including network formation, inter- and intracellular signaling and neuronal network function, is underrepresented in DNT testing. This view therefore focuses on in vitro models and innovative experimental approaches for functional DNT testing, ranging from optical and electrophysiological measurements of intra- and intercellular signaling in neural stem/progenitor cells to measurements of network activity in neuronal networks using multielectrode arrays. The development of functional DNT assays will strongly support the decision-making process for measures to prevent potential chemical-induced adverse effects on neurodevelopment and cognition in humans. We therefore argue that for risk assessment, biochemical and morphological approaches should be complemented with investigations of neuronal (network) functionality.


Asunto(s)
Sistema Nervioso/efectos de los fármacos , Neuronas/efectos de los fármacos , Pruebas de Toxicidad , Humanos , Técnicas In Vitro , Red Nerviosa , Sistema Nervioso/embriología , Neuronas/citología
19.
ALTEX ; 29(4): 411-25, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23138511

RESUMEN

The role that in vitro systems can play in toxicological risk assessment is determined by the appropriateness of the chosen methods, with respect to the way in which in vitro data can be extrapolated to the in vivo situation. This report presents the results of a workshop aimed at better defining the use of in vitro-derived biomarkers of toxicity (BoT) and determining the place these data can have in human risk assessment. As a result, a conceptual framework is presented for the incorporation of in vitro-derived toxicity data into the risk assessment process. The selection of BoT takes into account that they need to distinguish adverse and adaptive changes in cells. The framework defines the place of in vitro systems in the context of data on exposure, structural and physico-chemical properties, and toxicodynamic and biokinetic modeling. It outlines the determination of a proper point-of-departure (PoD) for in vitro-in vivo extrapolation, allowing implementation in risk assessment procedures. A BoT will need to take into account both the dynamics and the kinetics of the compound in the in vitro systems. For the implementation of the proposed framework it will be necessary to collect and collate data from existing literature and new in vitro test systems, as well as to categorize biomarkers of toxicity and their relation to pathways-of-toxicity. Moreover, data selection and integration need to be driven by their usefulness in a quantitative in vitro-in vivo extrapolation (QIVIVE).


Asunto(s)
Biomarcadores/metabolismo , Sustancias Peligrosas/toxicidad , Medición de Riesgo/métodos , Pruebas de Toxicidad/métodos , Pruebas de Toxicidad/normas , Alternativas a las Pruebas en Animales/métodos , Animales , Humanos
20.
Environ Health Perspect ; 119(7): 900-7, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21245014

RESUMEN

BACKGROUND/OBJECTIVE: Polybrominated diphenyl ethers (PBDEs) and their hydroxylated (OH-) or methoxylated forms have been detected in humans. Because this raises concern about adverse effects on the developing brain, we reviewed the scientific literature on these mechanisms. DATA SYNTHESIS: Many rodent studies reported behavioral changes after developmental, neonatal, or adult exposure to PBDEs, and other studies documented subtle structural and functional alterations in brains of PBDE-exposed animals. Functional effects have been observed on synaptic plasticity and the glutamate-nitric oxide-cyclic guanosine monophosphate pathway. In the brain, changes have been observed in the expression of genes and proteins involved in synapse and axon formation, neuronal morphology, cell migration, synaptic plasticity, ion channels, and vesicular neurotransmitter release. Cellular and molecular mechanisms include effects on neuronal viability (via apoptosis and oxidative stress), neuronal differentiation and migration, neurotransmitter release/uptake, neurotransmitter receptors and ion channels, calcium (Ca²âº) homeostasis, and intracellular signaling pathways. DISCUSSION: Bioactivation of PBDEs by hydroxylation has been observed for several endocrine end points. This has also been observed for mechanisms related to neurodevelopment, including binding to thyroid hormone receptors and transport proteins, disruption of Ca²âº homeostasis, and modulation of GABA and nicotinic acetylcholine receptor function. CONCLUSIONS: The increased hazard for developmental neurotoxicity by hydroxylated (OH-)PBDEs compared with their parent congeners via direct neurotoxicity and thyroid disruption clearly warrants further investigation into a) the role of oxidative metabolism in producing active metabolites of PBDEs and their impact on brain development; b) concentrations of parent and OH-PBDEs in the brain; and c) interactions between different environmental contaminants during exposure to mixtures, which may increase neurotoxicity.


Asunto(s)
Conducta Animal/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Retardadores de Llama/toxicidad , Éteres Difenilos Halogenados/toxicidad , Sistema Nervioso/efectos de los fármacos , Bifenilos Policlorados/envenenamiento , Animales , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Embrión de Mamíferos/efectos de los fármacos , Contaminantes Ambientales/farmacocinética , Femenino , Retardadores de Llama/farmacocinética , Humanos , Hidroxilación , Ratones , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Estrés Oxidativo/efectos de los fármacos , Bifenilos Policlorados/química , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA