RESUMEN
Tautomers are one of the many types of isomers, and differences in tautomeric structures confer altered chemical and biological properties. Using ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) ex vivo metabolomics, we investigate, in whole blood, the divergent metabolism of enol and keto forms of indole-3-pyruvate (IPyA), a tautomeric product of aromatic amino acid metabolism. Two new compounds resulting from IPyA metabolism were discovered, 3-(1H-indol-3-yl)-2,3-dioxopropanoic acid or "indole-3-oxopyruvic acid" and glutathionyl-indole pyruvate (GSHIPyA), which were characterized via ultraviolet photodissociation (UVPD) and higher-energy collisional dissociation (HCD). Computational calculations support the hypothesis that GSHIPyA forms specifically through the enol form of IPyA. GSHIPyA is also hypothesized to be tautomeric, and a hydrogen-deuterium exchange-high-resolution tandem mass spectrometry (HDX-HRMS/MS) approach is developed to prove the presence of an enol and keto tautomer. HDX of GSHIPyA labels the keto form with an additional deuterium, relative to the enol form. HRMS/MS of the labeled isomers is employed to leverage the relationship of resolving power scaling inversely with the square root of m/z, for Orbitrap mass analyzers. HRMS/MS yields a smaller-molecular-weight deuterated tautomeric product ion, reducing the analyte ion m/z and thus lowering the resolving power necessary to separate the deuterated keto tautomer product ion from the [13]C product ion.
Asunto(s)
Aminoácidos Aromáticos , Metabolómica , Isomerismo , Metabolómica/métodos , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/metabolismo , Aminoácidos Aromáticos/análisis , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Indoles/química , Indoles/metabolismo , HumanosRESUMEN
Background: Resistance to antimalarial drugs remains a major obstacle to malaria elimination. Multiplexed, targeted amplicon sequencing is being adopted for surveilling resistance and dissecting the genetics of complex malaria infections. Moreover, genotyping of parasites and detection of molecular markers drug resistance in resource-limited regions requires open-source protocols for processing samples, using accessible reagents, and rapid methods for processing numerous samples including pooled sequencing. Methods: P lasmodium f alciparum Streamlined Multiplex Antimalarial Resistance and Relatedness Testing (Pf-SMARRT) is a PCR-based amplicon panel consisting of 15 amplicons targeting antimalarial resistance mutations and 9 amplicons targeting hypervariable regions. This assay uses oligonucleotide primers in two pools and a non-proprietary library and barcoding approach. Results: We evaluated Pf-SMARRT using control mocked dried blood spots (DBS) at varying levels of parasitemia and a mixture of 3D7 and Dd2 strains at known frequencies, showing the ability to genotype at low parasite density and recall within-sample allele frequencies. We then piloted Pf-SMARRT to genotype 100 parasite isolates collected from uncomplicated malaria cases at three health facilities in Dschang, Western Cameroon. Antimalarial resistance genotyping showed high levels of sulfadoxine-pyrimethamine resistance mutations, including 31% prevalence of the DHPS A613S mutation. No K13 candidate or validated artemisinin partial resistance mutations were detected, but one low-level non-synonymous change was observed. Pf-SMARRT's hypervariable targets, used to assess complexity of infections and parasite diversity and relatedness, showed similar levels and patterns compared to molecular inversion probe (MIP) sequencing. While there was strong concordance of antimalarial resistance mutations between individual samples and pools, low-frequency variants in the pooled samples were often missed. Conclusion: Overall, Pf-SMARRT is a robust tool for assessing parasite relatedness and antimalarial drug resistance markers from both individual and pooled samples. Control samples support that accurate genotyping as low as 1 parasite per microliter is routinely possible.
RESUMEN
PROBLEM ADDRESSED: Crimean Congo hemorrhagic fever (CCHF) is a tick-borne disease with high fatality rates and an expansive geographic distribution, yet disease prevalence data in Cameroon is lacking. OBJECTIVE: This study aimed to determine CCHF virus (CCHFV) seroprevalence and tick distribution among cattle herders and febrile patients in West and Centre Cameroon. METHODS AND APPROACH: Two cross-sectional serological studies of human and cattle were conducted from October to December 2021 and from June to July 2022, which included the collection of ticks. Enzyme-linked immunosorbent assay (ELISA) were used to detect anti-CCHFV antibodies, while a knowledge, attitudes, and practice (KAP) survey assessed tick and tickborne disease related knowledge and behaviors among herders. Tick identification used morphological keys. RESULTS: The KAP survey showed adequate tick knowledge (94.5 %) among herders but poor understanding of disease transmission, with favorable attitudes towards tick control (24.7 %) but inadequate implementation. Rhipicephalus annulatus (64.1 %) predominated among the 1,296 ticks collected during each rainy season. Among cattle, 27.4 % were seropositive, and seropositivity was associated with specific villages, cattle age (>4 years), and female sex. Herders had a 17.8 % seroprevalence, while febrile patients had 8.3 %, with higher rates in those >20 years old for both groups. Self-reported tick removal by herders after contact and grazing may increase CCHFV exposure. CONCLUSIONS: This study confirms CCHFV circulation in rural West Cameroon and unexpected exposure risk in Yaounde, highlighting the need for active entomological surveillance and preventive measures in transhumance and cattle market activities. Establishing an occupation-based surveillance system can help identify CCHFV hotspots to prevent outbreaks.
RESUMEN
It is well-known in biochemistry that structure confers function, meaning that chemical structural elucidation is critical to truly understanding the function of a given metabolite. Indole-3-pyruvate (IPyA) exists in an equilibrium between the keto and enol tautomeric forms. IPyA is suggested to play a role in immune function; however, determining whether the tautomeric forms function differently can only be studied if an analytical method is capable of distinguishing between the two forms. Herein, we describe the use of UHPLC-HRMS to gain insight into the physical variables that govern IPyA tautomer equilibrium, reactivity, and detection limit. We use hydrogen-deuterium exchange (HDX) to identify enol and keto peaks, and we show that tautomers exhibit a valley of fronting followed by a tailing peak shape (though separation is still attainable) and identical MS/MS spectra. We observed drastically different ratios of keto and enol forms in different solvents, which is an important consideration for in vitro studies. IPyA was found to be highly unstable with accelerated reactivity in peroxides. Through in vitro reactivity studies, IPyA produced a myriad of known and unknown metabolites via nonenzymatic processes, many of which were mapped in vivo via the analysis of human plasma. Finally, we show that vitamin C (ascorbic acid) can slow this reactivity and enable sensitive detection in whole blood.
Asunto(s)
Indoles , Indoles/química , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas en Tándem , IsomerismoRESUMEN
Rift Valley fever virus (RVFV) is an arbovirus in the Phenuiviridae family identified initially by the large 'abortion storms' observed among ruminants; RVFV can also infect humans. In humans, there is a wide variation of clinical symptoms ranging from subclinical to mild febrile illness to hepatitis, retinitis, delayed-onset encephalitis, or even hemorrhagic fever. The RVFV is a tri-segmented negative-sense RNA virus consisting of S, M, and L segments. The L segment encodes the RNA-dependent RNA polymerase (RdRp), termed the L protein, which is responsible for both viral mRNA synthesis and genome replication. Phosphorylation of viral RdRps is known to regulate viral replication. This study shows that RVFV L protein is serine phosphorylated and identified Casein Kinase 1 alpha (CK1α) and protein phosphatase 1 alpha (PP1α) as L protein binding partners. Inhibition of CK1 and PP1 through small molecule inhibitor treatment, D4476 and 1E7-03, respectively, caused a change in the phosphorylated status of the L protein. Inhibition of PP1α resulted in increased L protein phosphorylation whereas inhibition of CK1α decreased L protein phosphorylation. It was also found that in RVFV infected cells, PP1α localized to the cytoplasmic compartment. Treatment of RVFV infected cells with CK1 inhibitors reduced virus production in both mammalian and mosquito cells. Lastly, inhibition of either CK1 or PP1 reduced viral genomic RNA levels. These data indicate that L protein is phosphorylated and that CK1 and PP1 play a crucial role in regulating the L protein phosphorylation cycle, which is critical to viral RNA production and viral replication.
Asunto(s)
Proteína Fosfatasa 1 , Virus de la Fiebre del Valle del Rift , Replicación Viral , Virus de la Fiebre del Valle del Rift/fisiología , Virus de la Fiebre del Valle del Rift/genética , Fosforilación , Humanos , Animales , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 1/genética , Genoma Viral , Proteínas Virales/metabolismo , Proteínas Virales/genética , Caseína Quinasa Ialfa/metabolismo , Caseína Quinasa Ialfa/genética , Chlorocebus aethiops , Línea Celular , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Células Vero , ARN Viral/genética , ARN Viral/metabolismo , Fiebre del Valle del Rift/virologíaRESUMEN
Syndromic surveillance is an effective tool for enabling the timely detection of infectious disease outbreaks and facilitating the implementation of effective mitigation strategies by public health authorities. While various information sources are currently utilized to collect syndromic signal data for analysis, the aggregated measurement of cough, an important symptom for many illnesses, is not widely employed as a syndromic signal. With recent advancements in ubiquitous sensing technologies, it becomes feasible to continuously measure population-level cough incidence in a contactless, unobtrusive, and automated manner. In this work, we demonstrate the utility of monitoring aggregated cough count as a syndromic indicator to estimate COVID-19 cases. In our study, we deployed a sensor-based platform (Syndromic Logger) in the emergency room of a large hospital. The platform captured syndromic signals from audio, thermal imaging, and radar, while the ground truth data were collected from the hospital's electronic health record. Our analysis revealed a significant correlation between the aggregated cough count and positive COVID-19 cases in the hospital (Pearson correlation of 0.40, p-value < 0.001). Notably, this correlation was higher than that observed with the number of individuals presenting with fever (ρ = 0.22, p = 0.04), a widely used syndromic signal and screening tool for such diseases. Furthermore, we demonstrate how the data obtained from our Syndromic Logger platform could be leveraged to estimate various COVID-19-related statistics using multiple modeling approaches. Aggregated cough counts and other data, such as people density collected from our platform, can be utilized to predict COVID-19 patient visits related metrics in a hospital waiting room, and SHAP and Gini feature importance-based metrics showed cough count as the important feature for these prediction models. Furthermore, we have shown that predictions based on cough counting outperform models based on fever detection (e.g., temperatures over 39°C), which require more intrusive engagement with the population. Our findings highlight that incorporating cough-counting based signals into syndromic surveillance systems can significantly enhance overall resilience against future public health challenges, such as emerging disease outbreaks or pandemics.
Asunto(s)
COVID-19 , Vigilancia de Guardia , Humanos , COVID-19/epidemiología , Salas de Espera , Hospitales , Brotes de Enfermedades/prevención & control , Fiebre/epidemiologíaRESUMEN
The mosquito-borne disease, Yellow fever (YF), has been largely controlled via mass delivery of an effective vaccine and mosquito control interventions. However, there are warning signs that YF is re-emerging in both Sub-Saharan Africa and South America. Imported from Africa in slave ships, YF was responsible for devastating outbreaks in the Caribbean. In Martinique, the last YF outbreak was reported in 1908 and the mosquito Aedes aegypti was incriminated as the main vector. We evaluated the vector competence of fifteen Ae. aegypti populations for five YFV genotypes (Bolivia, Ghana, Nigeria, Sudan, and Uganda). Here we show that mosquito populations from the Caribbean and the Americas were able to transmit the five YFV genotypes, with YFV strains for Uganda and Bolivia having higher transmission success. We also observed that Ae. aegypti populations from Martinique were more susceptible to YFV infection than other populations from neighboring Caribbean islands, as well as North and South America. Our vector competence data suggest that the threat of re-emergence of YF in Martinique and the subsequent spread to Caribbean nations and beyond is plausible.
Asunto(s)
Aedes , Fiebre Amarilla , Animales , Humanos , Virus de la Fiebre Amarilla/genética , Mosquitos Vectores , Indias Occidentales , Región del Caribe/epidemiología , UgandaRESUMEN
The RTS,S/AS02A malaria vaccine is based on the Plasmodium falciparum circumsporozoite protein (PfCSP), which is O-fucosylated on the sporozoite surface. We determined whether RTS,S/AS02A-induced immunoglobulin G (IgG) antibodies recognize vaccine-like nonfucosylated PfCSP better than native-like fucosylated PfCSP. Similar to previous vaccine trials, RTS,S/AS02A vaccination induced high anti-PfCSP IgG levels associated with malaria protection. IgG recognition of nonfucosylated and fucosylated PfCSP was equivalent, suggesting that PfCSP fucosylation does not affect antibody recognition. Clinical Trials Registration. NCT00197041.
Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Humanos , Plasmodium falciparum , Malaria Falciparum/prevención & control , Inmunoglobulina G , Anticuerpos Antiprotozoarios , Proteínas ProtozoariasRESUMEN
Dengue fever is expanding as a global public health threat including countries within Africa. For the past few decades, Cameroon has experienced sporadic cases of arboviral infections including dengue fever. Here, we conducted genomic analyses to investigate the origin and phylogenetic profile of Cameroon DENV-1 outbreak strains and predict the impact of emerging therapeutics on these strains. Bayesian and maximum-likelihood phylogenetic inference approaches were employed in virus evolutionary analyses. An in silico analysis was performed to assess the divergence in immunotherapeutic and vaccine targets in the new genomes. Six complete DENV-1 genomes were generated from 50 samples that met a clinical definition for DENV infection. Phylogenetic analyses revealed that the strains from the current study belong to a sub-lineage of DENV-1 genotype V and form a monophyletic taxon with a 2012 strain from Gabon. The most recent common ancestor (TMRCA) of the Cameroon and Gabon strains was estimated to have existed around 2008. Comparing our sequences to the vaccine strains, 19 and 15 amino acid (aa) substitutions were observed in the immuno-protective prM-E protein segments of the Dengvaxia® and TetraVax-DV-TV003 vaccines, respectively. Epitope mapping revealed mismatches in aa residues at positions E155 and E161 located in the epitope of the human anti-DENV-1 monoclonal antibody HMAb 1F4. The new DENV strains constitute a conserved genomic pool of viruses endemic to the Central African region that needs prospective monitoring to track local viral evolution. Further work is needed to ascertain the performance of emerging therapeutics in DENV strains from the African region.
Asunto(s)
Virus del Dengue , Dengue , Vacunas , Humanos , Virus del Dengue/genética , Dengue/epidemiología , Filogenia , Camerún/epidemiología , Teorema de Bayes , Estudios Prospectivos , Secuenciación Completa del Genoma , Genotipo , Brotes de EnfermedadesRESUMEN
Introduction: SARS-CoV-2 subverts host cell processes to facilitate rapid replication and dissemination, and this leads to pathological inflammation. Methods: We used niclosamide (NIC), a poorly soluble anti-helminth drug identified initially for repurposed treatment of COVID-19, which activates the cells' autophagic and lipophagic processes as a chemical probe to determine if it can modulate the host cell's total lipid profile that would otherwise be either amplified or reduced during SARS-CoV-2 infection. Results: Through parallel lipidomic and transcriptomic analyses we observed massive reorganization of lipid profiles of SARS-CoV-2 infected Vero E6 cells, especially with triglycerides, which were elevated early during virus replication, but decreased thereafter, as well as plasmalogens, which were elevated at later timepoints during virus replication, but were also elevated under normal cell growth. These findings suggested a complex interplay of lipid profile reorganization involving plasmalogen metabolism. We also observed that NIC treatment of both low and high viral loads does not affect virus entry. Instead, NIC treatment reduced the abundance of plasmalogens, diacylglycerides, and ceramides, which we found elevated during virus infection in the absence of NIC, resulting in a significant reduction in the production of infectious virions. Unexpectedly, at higher viral loads, NIC treatment also resulted in elevated triglyceride levels, and induced significant changes in phospholipid metabolism. Discussion: We posit that future screens of approved or new partner drugs should prioritize compounds that effectively counter SARS-CoV-2 subversion of lipid metabolism, thereby reducing virus replication, egress, and the subsequent regulation of key lipid mediators of pathological inflammation.
RESUMEN
Syndromic surveillance is an effective tool for enabling the timely detection of infectious disease outbreaks and facilitating the implementation of effective mitigation strategies by public health authorities. While various information sources are currently utilized to collect syndromic signal data for analysis, the aggregated measurement of cough, an important symptom for many illnesses, is not widely employed as a syndromic signal. With recent advancements in ubiquitous sensing technologies, it becomes feasible to continuously measure population-level cough incidence in a contactless, unobtrusive, and automated manner. In this work, we demonstrate the utility of monitoring aggregated cough count as a syndromic indicator to estimate COVID-19 cases. In our study, we deployed a sensor-based platform (Syndromic Logger) in the emergency room of a large hospital. The platform captured syndromic signals from audio, thermal imaging, and radar, while the ground truth data were collected from the hospital's electronic health record. Our analysis revealed a significant correlation between the aggregated cough count and positive COVID-19 cases in the hospital (Pearson correlation of 0.40, p-value < 0.001). Notably, this correlation was higher than that observed with the number of individuals presenting with fever (ρ = 0.22, p = 0.04), a widely used syndromic signal and screening tool for such diseases. Furthermore, we demonstrate how the data obtained from our Syndromic Logger platform could be leveraged to estimate various COVID-19-related statistics using multiple modeling approaches. Our findings highlight the efficacy of aggregated cough count as a valuable syndromic indicator associated with the occurrence of COVID-19 cases. Incorporating this signal into syndromic surveillance systems for such diseases can significantly enhance overall resilience against future public health challenges, such as emerging disease outbreaks or pandemics.
RESUMEN
Malaria programs rely upon a variety of diagnostic assays, including rapid diagnostic tests (RDTs), microscopy, polymerase chain reaction (PCR), and bead-based immunoassays (BBA), to monitor malaria prevalence and support control and elimination efforts. Data comparing these assays are limited, especially from high-burden countries like the Democratic Republic of the Congo (DRC). Using cross-sectional and routine data, we compared diagnostic performance and Plasmodium falciparum prevalence estimates across health areas of varying transmission intensity to illustrate the relevance of assay performance to malaria control programs. Data and samples were collected between March-June 2018 during a cross-sectional household survey across three health areas with low, moderate, and high transmission intensities within Kinshasa Province, DRC. Samples from 1,431 participants were evaluated using RDT, microscopy, PCR, and BBA. P. falciparum parasite prevalence varied between diagnostic methods across all health areas, with the highest prevalence estimates observed in Bu (57.4-72.4% across assays), followed by Kimpoko (32.6-53.2%), and Voix du Peuple (3.1-8.4%). Using latent class analysis to compare these diagnostic methods against an "alloyed gold standard," the most sensitive diagnostic method was BBA in Bu (high prevalence) and Voix du Peuple (low prevalence), while PCR diagnosis was most sensitive in Kimpoko (moderate prevalence). RDTs were consistently the most specific diagnostic method in all health areas. Among 9.0 million people residing in Kinshasa Province in 2018, the estimated P. falciparum prevalence by microscopy, PCR, and BBA were nearly double that of RDT. Comparison of malaria RDT, microscopy, PCR, and BBA results confirmed differences in sensitivity and specificity that varied by endemicity, with PCR and BBA performing best for detecting any P. falciparum infection. Prevalence estimates varied widely depending on assay type for parasite detection. Inherent differences in assay performance should be carefully considered when using community survey and surveillance data to guide policy decisions.
RESUMEN
BACKGROUND: The reliance on blood for thin and thick blood smear microscopy-using a relatively invasive procedure has presented challenges to the use of reliable diagnostic tests in non-clinical settings at the point-of-need (PON). To improve the capacity of non-blood-based rapid diagnostic tests to confirm subclinical infections, and thereby identify and quantify the human reservoir at the PON, a cross-sectoral collaboration between university researchers and commercial partners produced an innovative, non-invasive saliva-based RDT capable of identifying novel, non-hrp2/3 parasite biomarkers. While this new saliva-based malaria asymptomatic and asexual rapid test (SMAART-1) shows increased detection sensitivity and precision potential by identifying a new P. falciparum protein marker (PSSP17), appraising its utility in the field-particularly with respect to its adoption potential with children and adults in high risk, endemic regions-is necessary to warrant its continued development. METHODS: The purpose of this study was to assess the acceptability and adoption potential of the SMAART-1 at select PON sites in the Kinshasa Province. Teachers, community health workers, nurses, and laboratory technicians participated in data collection at three distinct community sites in Kinshasa Province, Democratic Republic of the Congo. Three data collection methods were utilized in this mixed methods study to provide an overarching acceptability evaluation of the SMAART-1 at PON field sites: observation checklists of SMAART-1 implementation, focus group discussions, and surveys with local health care practitioners-particularly teachers and community health workers. RESULTS: Findings indicate participants were interested in and supportive of the SMAART-1 protocol, with approximately 99% of the participants surveyed indicating that they either "agreed" or "strongly agreed" with the statement that they "would use the saliva-based malaria asymptomatic rapid test as part of a community malaria detection and treatment programme." Data also suggest that the protocol was broadly appealing for its testing sensitivity and ease of use. CONCLUSIONS: The SMAART-1 protocol's clinically reliable results demonstrate a promising new level of sensitivity and precision for detecting parasite biomarkers. This study's mixed-methods assessment of the protocol's utility and adoption potential in the field, with a target user audience, advances its development and points to opportunities to formalize and expand evaluation efforts.
Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Adulto , Niño , Animales , Humanos , Saliva , República Democrática del Congo/epidemiología , Pruebas Diagnósticas de Rutina/métodos , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Encuestas y Cuestionarios , Biomarcadores , Malaria Falciparum/epidemiología , Plasmodium falciparumRESUMEN
Histidine-rich protein 2- (HRP2-) based rapid diagnostic tests (RDTs) are widely used to detect Plasmodium falciparum in sub-Saharan Africa. Reports of parasites with pfhrp2 and/or pfhrp3 (pfhrp2/3) gene deletions in Africa raise concerns about the long-term viability of HRP2-based RDTs. We evaluated changes in pfhrp2/3 deletion prevalence over time using a 2018-2021 longitudinal study of 1,635 enrolled individuals in Kinshasa Province, Democratic Republic of the Congo (DRC). Samples collected during biannual household visits with ≥ 100 parasites/µL by quantitative real-time polymerase chain reaction were genotyped using a multiplex real-time PCR assay. Among 2,726 P. falciparum PCR-positive samples collected from 993 participants during the study period, 1,267 (46.5%) were genotyped. No pfhrp2/3 deletions or mixed pfhrp2/3-intact and -deleted infections were identified in our study. Pfhrp2/3-deleted parasites were not detected in Kinshasa Province; ongoing use of HRP2-based RDTs is appropriate.
Asunto(s)
Malaria Falciparum , Malaria , Humanos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Antígenos de Protozoos/genética , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Malaria Falciparum/genética , Estudios Longitudinales , República Democrática del Congo/epidemiología , Eliminación de Gen , Pruebas Diagnósticas de Rutina , Estudios de Cohortes , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
An obligatory step in the complex life cycle of the malaria parasite is sporogony, which occurs during the oocyst stage in adult female Anopheles mosquitoes. Sporogony is metabolically demanding, and successful oocyst maturation is dependent on host lipids. In insects, lipid energy reserves are mobilized by adipokinetic hormones (AKHs). We hypothesized that Plasmodium falciparum infection activates Anopheles gambiae AKH signaling and lipid mobilization. We profiled the expression patterns of AKH pathway genes and AgAkh1 peptide levels in An. gambiae during starvation, after blood feeding, and following infection and observed a significant time-dependent up-regulation of AKH pathway genes and peptide levels during infection. Depletion of AgAkh1 and AgAkhR by RNAi reduced salivary gland sporozoite production, while synthetic AgAkh1 peptide supplementation rescued sporozoite numbers. Inoculation of uninfected female mosquitoes with supernatant from P. falciparum-infected midguts activated AKH signaling. Clearly, identifying the parasite molecules mediating AKH signaling in P. falciparum sporogony is paramount.
Asunto(s)
Anopheles , Malaria Falciparum , Malaria , Animales , Femenino , Plasmodium falciparum/genética , Anopheles/metabolismo , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología , Malaria Falciparum/parasitologíaRESUMEN
Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.
Asunto(s)
Investigación , Virología , Virosis , Humanos , COVID-19/prevención & control , Difusión de la Información , Pandemias/prevención & control , Formulación de Políticas , Investigación/normas , Investigación/tendencias , SARS-CoV-2 , Virología/normas , Virología/tendencias , Virosis/prevención & control , Virosis/virología , VirusRESUMEN
Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.
Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , Virus , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Pandemias/prevención & control , Virus/genéticaRESUMEN
Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.
Asunto(s)
COVID-19 , Virus , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Pandemias/prevención & control , AntiviralesRESUMEN
A national 2017 vector control capacity survey was conducted to assess the United States' (U.S.'s) ability to prevent emerging vector-borne disease. Since that survey, the southeastern U.S. has experienced continued autochthonous exotic vector-borne disease transmission and establishment of invasive vector species. To understand the current gaps in control programs and establish a baseline to evaluate future vector control efforts for this vulnerable region, a focused needs assessment survey was conducted in early 2020. The southeastern U.S. region was targeted, as this region has a high probability of novel vector-borne disease introduction. Paper copies delivered in handwritten envelopes and electronic copies of the survey were delivered to 386 unique contacts, and 150 returned surveys were received, corresponding to a 39% response rate. Overall, the survey found vector control programs serving areas with over 100,000 residents and those affiliated with public health departments had more core capabilities compared to smaller programs and those not affiliated with public health departments. Furthermore, the majority of vector control programs in this region do not routinely monitor for pesticide resistance. Taken as a whole, these results suggest that the majority of the southeastern U.S. is vulnerable to vector-borne disease outbreaks. Results from this survey raise attention to the critical need of providing increased resources to bring all vector control programs to a competent level, ensuring that public health is protected from the threat of vector-borne disease.
RESUMEN
BACKGROUND: Current SARS-CoV-2 detection platforms lack the ability to differentiate among variants of concern (VOCs) in an efficient manner. CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated) based detection systems have the potential to transform the landscape of COVID-19 diagnostics due to their programmability; however, most of these methods are reliant on either a multi-step process involving amplification or elaborate guide RNA designs. METHODS: Three Cas12b proteins from Alicyclobacillus acidoterrestris (AacCas12b), Alicyclobacillus acidiphilus (AapCas12b), and Brevibacillus sp. SYP-B805 (BrCas12b) were expressed and purified, and their thermostability was characterised by differential scanning fluorimetry, cis-, and trans-cleavage activities over a range of temperatures. The BrCas12b was then incorporated into a reverse transcription loop-mediated isothermal amplification (RT-LAMP)-based one-pot reaction system, coined CRISPR-SPADE (CRISPR Single Pot Assay for Detecting Emerging VOCs). FINDINGS: Here we describe a complete one-pot detection reaction using a thermostable Cas12b effector endonuclease from Brevibacillus sp. to overcome these challenges detecting and discriminating SARS-CoV-2 VOCs in clinical samples. CRISPR-SPADE was then applied for discriminating SARS-CoV-2 VOCs, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) and validated in 208 clinical samples. CRISPR-SPADE achieved 92·8% sensitivity, 99·4% specificity, and 96·7% accuracy within 10-30 min for discriminating the SARS-CoV-2 VOCs, in agreement with S gene sequencing, achieving a positive and negative predictive value of 99·1% and 95·1%, respectively. Interestingly, for samples with high viral load (Ct value ≤ 30), 100% accuracy and sensitivity were attained. To facilitate dissemination and global implementation of the assay, a lyophilised version of one-pot CRISPR-SPADE reagents was developed and combined with an in-house portable multiplexing device capable of interpreting two orthogonal fluorescence signals. INTERPRETATION: This technology enables real-time monitoring of RT-LAMP-mediated amplification and CRISPR-based reactions at a fraction of the cost of a qPCR system. The thermostable Brevibacillus sp. Cas12b offers relaxed primer design for accurately detecting SARS-CoV-2 VOCs in a simple and robust one-pot assay. The lyophilised reagents and simple instrumentation further enable rapid deployable point-of-care diagnostics that can be easily expanded beyond COVID-19. FUNDING: This project was funded in part by the United States-India Science & Technology Endowment Fund- COVIDI/247/2020 (P.K.J.), Florida Breast Cancer Foundation- AGR00018466 (P.K.J.), National Institutes of Health- NIAID 1R21AI156321-01 (P.K.J.), Centers for Disease Control and Prevention- U01GH002338 (R.R.D., J.A.L., & P.K.J.), University of Florida, Herbert Wertheim College of Engineering (P.K.J.), University of Florida Vice President Office of Research and CTSI seed funds (M.S.), and University of Florida College of Veterinary Medicine and Emerging Pathogens Institute (R.R.D.).