Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38927683

RESUMEN

Grapevine varieties from "Douro Superior" (NE Portugal) experience high temperatures, solar radiation, and water deficit during the summer. This summer's stressful growing conditions induce nucleic acids, lipids, and protein oxidation, which cause cellular, physiological, molecular, and biochemical changes. Cell cycle anomalies, mitosis delay, or cell death may occur at the cellular level, leading to reduced plant productivity. However, the foliar application of kaolin (KL) can mitigate the impact of abiotic stress by decreasing leaf temperature and enhancing antioxidant defence. Hence, this study hypothesised that KL-treated grapevine plants growing in NE Portugal would reveal, under summer stressful growing conditions, higher progression and stability of the leaf mitotic cell cycle than the untreated (control) plants. KL was applied after veraison for two years. Leaves, sampled 3 and 5 weeks later, were cytogenetically, molecularly, and biochemically analysed. Globally, integrating these multidisciplinary data confirmed the decreased leaf temperature and enhanced antioxidant defence of the KL-treated plants, accompanied by an improved regularity and completion of the leaf cell cycle relative to the control plants. Nevertheless, the KL efficacy was significantly influenced by the sampling date and/or variety. In sum, the achieved results confirmed the hypothesis initially proposed.


Asunto(s)
Caolín , Hojas de la Planta , Vitis , Vitis/genética , Vitis/efectos de los fármacos , Vitis/crecimiento & desarrollo , Vitis/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Caolín/farmacología , Estaciones del Año , Estrés Fisiológico/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Antioxidantes/farmacología
2.
Front Plant Sci ; 14: 1160100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082344

RESUMEN

Light intensity and spectral composition highly affect plant physiology, growth, and development. According to growing conditions, each species and/or cultivar has an optimum light intensity to drive photosynthesis, and different light spectra trigger photosynthetic responses and regulate plant development differently. For the maintenance of natural sports pitches, namely professional football competitions, turf quality is a key condition. Due to the architecture of most football stadiums, the lawns receive low intensities of natural light, so supplementary artificial lighting above the turf is required. The use of light-emitting diodes (LEDs) can have a higher cost-benefit ratio than traditional high-pressure sodium lamps. The continuous emission spectrum, combined with high spectral selectivity and adjustable optical power, can be used to optimize plant growth and development. Thus, perennial ryegrass (Lolium perenne L.) plants, commonly used for lawns, were primarily grown at three different intensities (200, 300, and 400 µmol m-2 s-1) of cool white light. Despite the higher water and energy consumption, 400 µmol m-2 s-1 maximizes the plant's efficiency, with higher photosynthetic rates and foliar pigment concentration, and more foliar soluble sugars and aboveground biomass accumulation. Then, it was evaluated the perennial ryegrass (Double and Capri cultivars) response to different spectral compositions [100% cool white (W), 80% Red:20% Blue (R80:B20), 90% Red:10% Blue (R90:B10), and 65% Red:15% Green:20% Blue (R65:G15:B20)] at 400 µmol m-2 s-1. Both cultivars exhibited similar responses to light treatments. In general, W contributed to the better photosynthetic performance and R90:B10 to the worst one. Water consumption and aboveground biomass were equal in all light treatments. R80:B20 allows energy savings of 24.3% in relation to the W treatment, showing a good compromise between physiological performance and energy consumption.

3.
Foods ; 12(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38231704

RESUMEN

Health-promoting compounds in wine and wine-related products are important due to their potential benefits to human health. Through an extensive literature review, this study explores the presence of these compounds in wine and wine-related products, examining their relationship with terroir and their impact on the aromatic and flavor properties that are perceived orally: sunlight exposure, rainfall patterns, and soil composition impact grapevines' synthesis and accumulation of health-promoting compounds. Enzymes, pH, and the oral microbiome are crucial in sensory evaluation and perception of health promotion. Moreover, their analysis of health-promoting compounds in wine and wine-related products relies on considerations such as the specific target compound, selectivity, sensitivity, and the complexity of the matrix.

4.
Plants (Basel) ; 11(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35956441

RESUMEN

Diseases and climate change are major factors limiting grape productivity and fruit marketability. Lasiodiplodia theobromae is a fungus of the family Botryosphaeriaceae that causes Botryosphaeria dieback of grapevine worldwide. Abiotic stress may change host vitality and impact susceptibility to the pathogen and/or change the pathogen's life cycle. However, the interaction between both stress drivers is poorly understood for woody plants. We addressed the hypothesis that distinct morpho-physiological and biochemical responses are induced in grapevine (Vitis vinifera)-L. theobromae interactions depending on when water deficits are imposed. Grapevines were submitted to water deficit either before or after fungus inoculation. Water deficit led to the reduction of the net photosynthetic rate, stomatal conductance, and transpiration rate, and increased the abscisic acid concentration regardless of fungal inoculation. L. theobromae inoculation before water deficit reduced plant survival by 50% and resulted in the accumulation of jasmonic acid and reductions in malondialdehyde levels. Conversely, grapevines inoculated after water deficit showed an increase in proline and malondialdehyde content and all plants survived. Overall, grapevines responded differently to the primary stress encountered, with consequences in their physiological responses. This study reinforces the importance of exploring the complex water deficit timing × disease interaction and the underlying physiological responses involved in grapevine performance.

5.
Foods ; 11(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35159407

RESUMEN

Sensory science provides objective information about the consumer understanding of a product, the acceptance or rejection of stimuli, and the description of the emotions evoked. It is possible to answer how consumers perceive a product through discriminative and descriptive techniques. However, perception can change over time, and these fluctuations can be measured with time-intensity methods. Instrumental sensory devices and immersive techniques are gaining headway as sensory profiling techniques. The authors of this paper critically review sensory techniques from classical descriptive analysis to the emergence of novel profiling methods. Though research has been done in the creation of new sensory methods and comparison of those methods, little attention has been given to the timeline approach and its advantages and challenges. This study aimed to gather, explain, simplify, and discuss the evolution of sensory techniques.

6.
J Sci Food Agric ; 102(2): 782-793, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34227127

RESUMEN

BACKGROUND: The application of kaolin particle film is considered a short-term strategy against several environmental stresses in areas with a Mediterranean-like climate. However, it is known that temperature fluctuations and water availability over the season can jeopardize kaolin efficiency in many Mediterranean crops. Hence, this study aims to evaluate the effects of kaolin foliar application on berry phytohormones, antioxidant defence, and oenological parameters at veraison and harvest stages of Touriga-Franca (TF) and Touriga-Nacional (TN) grapevines in two growing seasons (2017 and 2018). The 2017 growing season was considered the driest (-147.1 dryness index) and the warmest (2705 °C growing degree days) of the study. RESULTS: In 2017, TF kaolin-treated berries showed lower salicylic acid (-26.6% compared with unsprayed vines) and abscisic acid (ABA) (-10.5%) accumulation at veraison, whereas salicylic acid increased up to 28.8% at harvest. In a less hot season, TN and TF kaolin-treated grapevines showed a twofold in ABA content and a threefold increase in the indole-3-acetic acid content at veraison and lower ABA levels (83.8%) compared with unsprayed vines at harvest. Treated berries showed a decreased sugar content, without compromising malic and tartaric acid levels, and reactive oxygen species accumulation throughout berry ripening. CONCLUSION: The results suggest kaolin exerts a delaying effect in triggering ripening-related processes under severe summer stress conditions. Treated berries responded with improved antioxidant defence and phytohormone balance, showing significant interactions between kaolin treatment, variety, and developmental stage in both assessed years. © 2021 Society of Chemical Industry.


Asunto(s)
Frutas/química , Reguladores del Crecimiento de las Plantas/metabolismo , Vitis/efectos de los fármacos , Vitis/crecimiento & desarrollo , Ácido Abscísico/análisis , Ácido Abscísico/metabolismo , Clima , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Ácidos Indolacéticos/análisis , Ácidos Indolacéticos/metabolismo , Caolín/farmacología , Reguladores del Crecimiento de las Plantas/análisis , Ácido Salicílico/análisis , Ácido Salicílico/metabolismo , Vitis/química , Vitis/metabolismo
7.
Plant Physiol Biochem ; 162: 647-655, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33774469

RESUMEN

Field-grown grapevines are often exposed to multiple environmental stresses, which challenges wine-growers to develop sustainable measures to sustain vine growth, yield, and quality. Under field conditions this task is demanding, due to differences in the magnitudes of stresses and associated plant responses. In this study we explored the hypothesis that kaolin-particle film application improves grapevine photoprotection through the regulation of xanthophyll cycle genes, limiting the thermal dissipation of excess energy under harsh environmental conditions. Hence, we selected two grapevine varieties, Touriga-Nacional (TN) and Touriga-Franca (TF), grown in the Douro Demarcated Region, and evaluated changes in light dissipation mechanisms, xanthophyll cycle components, and the expression of xanthophyll cycle genes during the 2017 summer season. The results showed that, from veraison to ripening, kaolin triggered the up-regulation of violaxanthin de-epoxidase (VvVDE1) and zeaxanthin epoxidase (VvZEP1) genes, indicating optimised regulation of the xanthophyll cycle. Kaolin treatment also decreased chlorophyll (Chla, Chlb, Chl(a+b)) and carotenoid (Car) accumulation under increasing summer stress conditions in both varieties and lowered the non-photochemical quenching (NPQ) of grapevines on ripening, suggesting a long-term response to summer stress. In addition, kaolin-treated grapevines showed increased Chla/Chlb and lower Chl(a+b)/Car ratios, displaying some features of high light adapted leaves. Overall, this study suggests that kaolin application enabled grapevines to benefit from fluctuating periods of summer stress by managing chlorophyll and carotenoid content and limiting down-regulation of both photochemistry and photoinhibition processes. Under Mediterranean field conditions, kaolin application can be considered an efficient method of minimising summer stress impact on grapevines.


Asunto(s)
Clorofila , Xantófilas , Carotenoides , Luz , Hojas de la Planta , Tecnología
8.
Tree Physiol ; 41(5): 801-816, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33150950

RESUMEN

Pine pitch canker (PPC), caused by Fusarium circinatum Nirenberg and O'Donnell, represents an important threat to conifer forests worldwide, being associated with significant economic losses. Although essential to develop disease mitigation strategies, little research focused on host susceptibility/resistance mechanisms has been conducted. We aimed to explore the response of a highly susceptible (Pinus radiata D. Don) and a relatively resistant (Pinus pinea L.) species to F. circinatum infection at different stages of infection. Morpho-physiological, hormonal and oxidative stress-related changes were assessed for each pine species and sampling point. Most of the changes found occurred in symptomatic P. radiata, for which an increased susceptibility to photoinhibition was detected together with decreased superoxide dismutase activity. Abscisic acid catabolism was activated by F. circinatum inoculation in both pine species, leading to the accumulation of the inactive dihydrophaseic acid in P. radiata and of the less-active phaseic acid in P. pinea. Hormone confocal analysis revealed that this strategy may be of particular importance at 6 d.p.i. in P. pinea, which together with photosynthesis maintenance to fuel defense mechanism, could in part explain the species resistance to PPC. These results are of great interest for the development of hormone-based breeding strategies or for the use of hormone application as inducers of resistance to F. circinatum infection.


Asunto(s)
Fusarium , Pinus , Fitomejoramiento , Enfermedades de las Plantas
9.
Plants (Basel) ; 9(3)2020 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-32182702

RESUMEN

Water is the most widely limiting factor for plants distribution, survival and agricultural productivity, their responses to drought and recovery being critical for their success and productivity. Olea europaea L. is a well-adapted species to cyclic drought events, still at considerable expense of carbon reserves and CO2 supply. To study the role of abscisic acid (ABA) as a promoter of drought adaptability, young potted olive trees subjected to three drought-recovery cycles were pre-treated with ABA. The results demonstrated that ABA pre-treatment allowed the delay of the drought effects on stomatal conductance (gs) and net photosynthesis (An), and under severe drought, permitted the reduction of the non-stomatal limitations to An and the relative water content decline, the accumulation of compatible solutes and avoid the decline of photosynthetic pigments, soluble proteins and total thiols concentrations and the accumulation of ROS. Upon rewatering, ABA-sprayed plants showed an early recovery of An. The plant ionome was also changed by the addition of ABA, with special influence on root K, N and B concentrations. The improved physiological and biochemical functions of the ABA-treated plants attenuated the drought-induced decline in biomass accumulation and potentiated root growth and whole-plant water use efficiency after successive drought-rewatering cycles. These changes are likely to be of real adaptive significance, with important implications for olive tree growth and productivity.

10.
J Sci Food Agric ; 100(2): 682-694, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31583702

RESUMEN

BACKGROUND: Cropping practices focusing on agronomic water use efficiency and their impact on quality parameters must be investigated to overcome constraints affecting olive groves. We evaluated the response of olive trees (Olea europaea, cv. 'Cobrançosa') to different water regimes: full irrigation (FI, 100% crop evapotranspiration (ETc )), and three deficit irrigation strategies (DIS) (regulated (RDI, irrigated with 80% of crop evapotranspiration (ETc ) in phases I and III of fruit growth and 10% of ETc in the pit hardening stage), and two continuous sustained strategies (SDI) - a conventional SDI (27.5% of ETc ), and low-frequency irrigation adopted by the farmer (SDIAF, 21.2% of ETc ). RESULTS: The effects of water regimes on the plant water status, photosynthetic performance, metabolite fluctuations and fruit quality parameters were evaluated. All DIS treatments enhanced leaf tissue density; RDI and SDI generally did not affect leaf water status and maintained photosynthetic machinery working properly, and the SDIAF treatment impaired olive tree physiological indicators. The DIS treatments maintained the levels of primary metabolites in leaves, but SDIAF plants showed signs of oxidative stress. Moreover, DIS treatments led to changes in the secondary metabolism, both in leaves and in fruits, with increased total phenolic compounds, ortho-diphenols, and flavonoid concentration, and higher total antioxidant capacity, as well higher oil content. Phenolic profiles showed the relevance of an early harvest in order to obtain higher oleuropein levels with associated higher health benefits. CONCLUSION: Adequate DIS are essential for sustainable olive growing, as they enhance the competitiveness of the sector in terms of olive production and associated quality parameters. © 2019 Society of Chemical Industry.


Asunto(s)
Riego Agrícola/métodos , Frutas/química , Olea/crecimiento & desarrollo , Extractos Vegetales/química , Agua/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Olea/química , Olea/metabolismo , Estrés Oxidativo , Fenoles/química , Fenoles/metabolismo , Fotosíntesis , Extractos Vegetales/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Agua/análisis
11.
Plants (Basel) ; 8(7)2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31319621

RESUMEN

Increasing consciousness regarding the nutritional value of olive oil has enhanced the demand for this product and, consequently, the expansion of olive tree cultivation. Although it is considered a highly resilient and tolerant crop to several abiotic stresses, olive growing areas are usually affected by adverse environmental factors, namely, water scarcity, heat and high irradiance, and are especially vulnerable to climate change. In this context, it is imperative to improve agronomic strategies to offset the loss of productivity and possible changes in fruit and oil quality. To develop more efficient and precise measures, it is important to look for new insights concerning response mechanisms to drought stress. In this review, we provided an overview of the global status of olive tree ecology and relevance, as well the influence of environmental abiotic stresses in olive cultivation. Finally, we explored and analysed the deleterious effects caused by drought (e.g., water status and photosynthetic performance impairment, oxidative stress and imbalance in plant nutrition), the most critical stressor to agricultural crops in the Mediterranean region, and the main olive tree responses to withstand this stressor.

12.
Plant Physiol Biochem ; 141: 315-324, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31207492

RESUMEN

Different SA concentrations (10, 100 and 1000 µM) were applied in young olive trees (Olea europaea L.) subjected to drought and rewatering. Plants treated with 10 µM exhibited a close behavior to SA-starved plants. Although both 100 and 1000 µM improved the balance between ROS production and scavenging, 100 µM was more efficient. During drought, 100 µM improved ROS detoxification and scavenging by the maintenance or overaccumulation of soluble proteins. During recovery, soluble proteins return to well-watered values and increased the investment in non-enzymatic antioxidants. 100 µM was also the most effective in plant ionome regulation, improving macro and micronutrients uptake, namely P, Fe, Mn and Zn, and changing mineral allocation patterns. Therefore, 100 µM also countered the drought-induced decline in total plant biomass accumulation. The application of suitable SA concentrations is an efficient tool to improve cellular homeostasis and growth of plants subjected to recurrent drought episodes.


Asunto(s)
Sequías , Iones/metabolismo , Olea/metabolismo , Oxidación-Reducción , Hojas de la Planta/metabolismo , Ácido Salicílico/farmacología , Antioxidantes/química , Biomasa , Minerales/química , Nutrientes/química , Estrés Oxidativo , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/metabolismo , Portugal , Especies Reactivas de Oxígeno/metabolismo , Agua/metabolismo
13.
Plant Physiol Biochem ; 133: 29-39, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30388436

RESUMEN

Regarding the foreseeing climate change is reasonable to expect harmful consequences to olive tree (Olea europaea L.), an iconic species of Mediterranean region. Thus, the selection of practices that allow a better drought resistance and recovery capacity needs the immediate attention of scientific community. This study evaluates the strategies adopted by young potted olive trees, subjected to three cycles of drought and rewatering, in the presence of a reflective clay, kaolin (KL). The results demonstrated that KL induced shade-related leaf structural changes and was effective in keeping leaf water status during the most stressful periods. In general, photosynthetic activity of sprayed plants was improved by the alleviation of drought-induced stomatal and non-stomatal limitations. Moreover, during stress imposition sprayed leaves showed reduced oxidative damages, allowing lower investment in antioxidant defences. Furthermore, sprayed plants also had lower nighttime water losses due to inferior nighttime stomatal conductance, and are able to maintain higher respiration rates. Upon rewatering, the shaded effect conferred by KL limited gas exchange restauration, but improved the plants' capacity to restore the metabolic functions. In spite of the induced physiological and biochemical changes, no significant differences were found in whole-plant water use efficiency and plant biomass accumulation, possibly by the attenuation of photosynthesis restauration during the recovery events. In conclusion, the changes induced by KL might be beneficial under severe conditions, as on realistic Mediterranean field environments.


Asunto(s)
Caolín , Membranas Artificiales , Olea/crecimiento & desarrollo , Estomas de Plantas/crecimiento & desarrollo , Agua/metabolismo , Deshidratación , Caolín/química , Caolín/farmacología
14.
J Plant Physiol ; 230: 21-32, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30142470

RESUMEN

The predicted accentuation of drought events highlights the importance of optimize plants capacity to tolerate drought, but also the capacity to recovery from it, especially in species, as olive tree (Olea europaea L.), that grows in particularly susceptible regions. Three different concentrations (10, 100 and 1000 µM) of salicylic acid (SA), a stress signaling phytohormone, was sprayed on 3-year-old potted olive trees subjected to three successive drought and rewatering events. Trees responses to SA application are concentration dependent, being 100 µM the most effective concentration to improve drought tolerance and recovery capacity. During drought events, this effectiveness was achieved by osmolytes accumulation, leaf water status maintenance, reduced photosynthetic systems drought-associated damages, and by optimizing shoot/root ratio. The better plant fitness during drought allowed a fast recovery of the physiological functions upon rewatering and reduced the necessity to invest in extra repair damages, allowing the regrowth. The intense abscisic acid (ABA) signal close to upper epidermis in stressed controls suggests a "memory" of the worst water status displayed by those plants. SA attenuated the limitation of total biomass accumulation imposed by drought, mainly in root system, increased water use efficiency and lead to a higher intense signal of indoleacetic acid (IAA) in leaves during recovery period. In summary, in a suitable concentration, SA demonstrate to be a promising tool to increase drought adaptability of olive trees.


Asunto(s)
Olea/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Ácido Salicílico/farmacología , Deshidratación , Relación Dosis-Respuesta a Droga , Olea/efectos de los fármacos , Olea/fisiología , Hojas de la Planta/metabolismo , Agua/metabolismo
15.
J Plant Physiol ; 226: 56-63, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29702427

RESUMEN

The climate change scenarios besides foreseeing a severe drought imposition also emphasize the temperature rising in the Mediterranean region, with special prominence at nighttime. Despite the high olive tree tolerance to severe environmental conditions, stomatal nighttime water loss can change plant water relations, and the related consequences and opportunities, especially under water scarcity, must be clarified. A set of 3-year-old potted olive trees were subjected to three cycles of drought, imposed by withholding irrigation, while another group were continuously irrigated. At the end of the latter and more severe drought cycle, daytime gas exchange parameters, water status and membrane integrity was negatively affected by drought imposition. Moreover, the nighttime transpiration rate was far above cuticular water loss, suggesting sustained stomatal aperture during nighttime, leading to substantial water losses, which was higher under drought in the first hours of darkness. The higher nighttime stomatal conductance of droughted plants were related with higher starch concentration in their leaves, a thicker trichome layer and a lower intercellular CO2 concentration, in a closely association with an inferior nighttime respiration. Still, whole-plant transpiration on droughted plants were much lower than leaf transpiration-based estimates, which is interpreted as compensation by water inputs due to dew deposition on leaves. Although unexpected, the increased of stomatal conductance in the first hours of the night, until a certain level of water deficit intensity, could be linked with potential benefits to the plants.


Asunto(s)
Olea/metabolismo , Transpiración de Plantas , Agua/metabolismo , Oscuridad , Sequías , Hojas de la Planta/metabolismo , Equilibrio Hidroelectrolítico
16.
J Plant Physiol ; 223: 47-56, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29486461

RESUMEN

Water scarcity is associated with extreme temperatures and high irradiance, and significantly and increasingly affects grapevine yield and quality. In this context, the foliar application of kaolin, a chemically inert mineral that greatly reflects ultraviolet and infrared radiations, as well as, in part, photosynthetically active radiation, has recently been shown to decrease photoinhibition in mature leaves. Here, the influence of this particle film on grapevine leaf metabolome and carbohydrate metabolism was evaluated. Molecular mechanisms underlying photoassimilate synthesis, metabolism and transport capacity were assessed by targeted transcriptional analyses and enzymatic activity assays. Kaolin application increased sucrose concentration in leaves and sucrose transport/phloem loading capacity, as suggested by the stimulation of the transcription of sucrose transporters VvSUC12 and VvSUC27 in these source organs. While the biosynthesis of sucrose increased, as evidenced by higher sucrose content and sucrose phosphate synthase (SPS) activity in leaves, the concentration of transitory starch before the dark period remained unaltered, despite a higher total amylolytic activity in the leaves of kaolin-treated plants. Metabolomic analysis by GC-TOF-MS showed that the application of kaolin enhanced the amounts of simple sugars, including fructose, maltose, xylulose, xylose, sophorose, ribose and erythrose; sugars-phosphate, like mannose-6-Pi, hexose-6-Pi, glucose-6-Pi, glucose-1-Pi, glycerol-α-Pi and fructose-6-Pi; polyols, like xylitol, maltitol, lactitol, glycerol, galactinol and erythritol; organic acids and amino acids.


Asunto(s)
Caolín/farmacología , Metaboloma/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/fisiología , Sacarosa/metabolismo , Vitis/fisiología , Transporte Biológico/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Transcripción Genética/efectos de los fármacos , Vitis/genética
17.
Front Plant Sci ; 7: 1150, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27551286

RESUMEN

Drought, elevated air temperature, and high evaporative demand are increasingly frequent during summer in grape growing areas like the Mediterranean basin, limiting grapevine productivity and berry quality. The foliar exogenous application of kaolin, a radiation-reflecting inert mineral, has proven effective in mitigating the negative impacts of these abiotic stresses in grapevine and other fruit crops, however, little is known about its influence on the composition of the grape berry and on key molecular mechanisms and metabolic pathways notably important for grape berry quality parameters. Here, we performed a thorough molecular and biochemical analysis to assess how foliar application of kaolin influences major secondary metabolism pathways associated with berry quality-traits, leading to biosynthesis of phenolics and anthocyanins, with a focus on the phenylpropanoid, flavonoid (both flavonol- and anthocyanin-biosynthetic) and stilbenoid pathways. In grape berries from different ripening stages, targeted transcriptional analysis by qPCR revealed that several genes involved in these pathways-VvPAL1, VvC4H1, VvSTSs, VvCHS1, VvFLS1, VvDFR, and VvUFGT-were more expressed in response to the foliar kaolin treatment, particularly in the latter maturation phases. In agreement, enzymatic activities of phenylalanine ammonia lyase (PAL), flavonol synthase (FLS), and UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT) were about two-fold higher in mature or fully mature berries from kaolin-treated plants, suggesting regulation also at a transcriptional level. The expression of the glutathione S-transferase VvGST4, and of the tonoplast anthocyanin transporters VvMATE1 and VvABCC1 were also all significantly increased at véraison and in mature berries, thus, when anthocyanins start to accumulate in the vacuole, in agreement with previously observed higher total concentrations of phenolics and anthocyanins in berries from kaolin-treated plants, especially at full maturity stage. Metabolomic analysis by reverse phase LC-QTOF-MS confirmed several kaolin-induced modifications including a significant increase in the quantities of several secondary metabolites including flavonoids and anthocyanins in the latter ripening stages, probably resulting from the general stimulation of the phenylpropanoid and flavonoid pathways.

18.
Food Chem ; 132(1): 1-8, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26434256

RESUMEN

The antioxidant properties of different ecotypes of chestnut nut (cv. Judia) were studied. Total phenolics and flavonoids were also determinated. Total phenolics amount ranged from 9.6mg/g of GAE (hottest ecotype, Murça) to 19.4mg/g of GAE (coldest ecotype, Valpaços). Gallic and ellagic acid were the predominant compounds and Valpaços had the highest values while, Murça had the lowest ones. The antioxidant capacity of ethanolic extracts were evaluated through several biochemical essays: ABTS (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid)) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical-scavenging activity, FRAP (ferric reducing/antioxidant power) and inhibition of oxidative haemolysis in erythrocytes. In order to evaluate the antioxidant efficiency of each ecotype, the EC50 values were calculated. Once again Valpaços revealed the best antioxidant properties, presenting much lower EC50 values. Climatic conditions influence seems to be a limiting factor for production of phenolic compounds and consequently for the antioxidant properties of chestnut nuts.


Asunto(s)
Antioxidantes/química , Ecosistema , Eleocharis/química , Extractos Vegetales/química , Flavonoides/análisis , Fenoles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...