Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Protein Pept Lett ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39021187

RESUMEN

BACKGROUND: Glycogen Storage Disease type III (GSD III) is a metabolic disorder resulting from a deficiency of the Glycogen Debranching Enzyme (GDE), a large monomeric protein (approximately 170 kDa) with cytoplasmic localization and two distinct enzymatic activities: 4-α-glucantransferase and amylo-α-1,6-glucosidase. Mutations in the Agl gene, with consequent deficiency in GDE, lead to the accumulation of abnormal/toxic glycogen with shorter chains (phosphorylase limit dextrin, PLD) in skeletal and/or heart muscle and/or in the liver. Currently, there is no targeted therapy, and available treatments are symptomatic, relying on specific diets. METHODS: Enzyme Replacement Therapy (ERT) might represent a potential therapeutic strategy for GSD III. Moreover, the single-gene nature of GSD III, the subcellular localization of GDE, and the type of affected tissues represent ideal conditions for exploring gene therapy approaches. Toward this direction, we designed a synthetic, codon-optimized cDNA encoding the human GDE. RESULTS: This gene yielded high amounts of soluble, enzymatically active protein in Escherichia coli. Moreover, when transfected in Human Embryonic Kidney cells (HEK-293), it successfully encoded a functional GDE. CONCLUSION: These results suggest that our gene or protein might complement the missing function in GSD III patients, opening the door to further exploration of therapeutic approaches for this disease.

2.
J Am Soc Nephrol ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995697

RESUMEN

BACKGROUND: Nephropathic cystinosis is a rare inherited lysosomal storage disorder caused by mutations in the CTNS gene that encodes for cystinosin, a lysosomal cystine/H+ symporter. From the standpoint of the kidneys, patients develop early-onset renal Fanconi syndrome and progressive chronic kidney disease. Current therapy with cysteamine delays but does not prevent kidney failure, and has significant side effects that limit adherence and reduce the quality of life of patients. METHODS: We have tested biochemically and histologically the effects of ketogenic diet on kidney disease of two animal models of nephropathic cystinosis. RESULTS: When Ctns-/- mice were fed with ketogenic diet from 3 to 12 months of age, we observed significant nearly complete prevention of Fanconi syndrome, including low molecular weight proteinuria, glycosuria and polyuria. Compared to wild-type animals, BUN at 12 months was higher in cystinotic mice fed with standard diet (P<0.001), but not with ketogenic diet. At sacrifice, kidneys of knock out mice fed with ketogenic diet appeared macroscopically similar to those of wild type animals, which was reflected microscopically by a significant reduction of interstitial cell infiltration (CD3 and CD68 positive cells, P<0.01), of interstitial fibrosis (Masson and α-SMA staining, P< 0.001), and of apoptosis (cleaved caspase 3 levels; P<0.001), and by indirect evidence of restoration of a normal autophagic flux (SQSTM1/p62 and LC3-II expression, P<0.05). Beneficial effects of ketogenic diet on tubular function were also observed after mice were fed with this ketogenic diet from the age of 6 months to the age of 15 months, after they had developed proximal tubular dysfunction. Although slightly less pronounced, these results were replicated in Ctns-/- rats fed with ketogenic diet from 2 to 8 months of life. CONCLUSIONS: These results indicate significant mitigation of the kidney phenotype in cystinotic animals fed with ketogenic diet.

3.
J Inherit Metab Dis ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837457

RESUMEN

The pathway of ammonia disposal in the mammalian organism has been described in 1932 as a metabolic cycle present in the liver in different compartments. In 1958, the first human disorder affecting this pathway was described as a genetic condition leading to cognitive impairment and constant abnormalities of amino acid metabolism. Since then, defects in all enzymes and transporters of the urea cycle have been described, referring to them as primary urea cycle disorders causing primary hyperammonemia. In addition, there is a still increasing list of conditions that impact on the function of the urea cycle by various mechanisms, hereby leading to secondary hyperammonemia. Despite great advances in understanding the molecular background and the biochemical specificities of both primary and secondary hyperammonemias, there remain many open questions: we do not fully understand the pathophysiology in many of the conditions; we do not always understand the highly variable clinical course of affected patients; we clearly appreciate the need for novel and improved diagnostic and therapeutic approaches. This study does look back to the beginning of the urea cycle (hi)story, briefly describes the journey through past decades, hereby illustrating advancements and knowledge gaps, and gives examples for the extremely broad perspective imminent to some of the defects of ureagenesis and allied conditions.

4.
Horm Res Paediatr ; : 1-13, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806014

RESUMEN

INTRODUCTION: To evaluate and describe the diagnostic process, medical, nutritional, and surgical approach, and neurological outcome, we report data from a large Italian cohort of patients with congenital hyperinsulinism (CHI). METHODS: We retrospectively analyzed 154 CHI patients admitted to Ospedale Pediatrico Bambino Gesù from 1985 to 2022. RESULTS: Hypoglycemia occurred within the first year of life in 85.5% of patients, median time to diagnosis was 1 day (IQR 14 days). Ninety-two percent of patients were treated with diazoxide: 66.9% were responsive. Octreotide was administered to 28.6% of patients: 61.4% were responsive. Forty percent of patients were off-therapy, mostly from diazoxide. Thirty-four percent of patients carried mutations in ABCC8, 12.6% were syndromic, and 9.2% were transient CHI. Surgery was performed in 23/47 diazoxide-unresponsive and 2/95 diazoxide-responsive patients: 64.0% were focal at histology. Combining data from genetics, pancreatic venous sampling, 18F-DOPA PET/CT, and histology, 80.6% resulted diffuse, 16.7% focal, and 2.8% atypical CHI. Post-surgical diabetes developed in 6 patients. Neurocognitive evaluation revealed developmental delay or intellectual disability in 15.7% of 70 patients, mostly of a mild degree. Epilepsy was documented in 13.7% of 139 patients. CONCLUSION: Our diagnostic and therapeutic results are mainly consistent with the international indications and the CHI Global Registry data, with relatively low rates of neurological outcomes. Good outcomes were likely associated with early diagnosis and prompt management of patients because the majority of patients were diagnosed within 2 weeks. Remarkably, it is of utmost importance to spread the knowledge and refer CHI patients to multidisciplinary expert centers.

5.
Pharmaceuticals (Basel) ; 17(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38794219

RESUMEN

Cystinosis is a rare lysosomal storage disorder caused by autosomal recessive mutations in the CTNS gene that encodes for the cystine transporter cystinosin, which is expressed on the lysosomal membrane mediating the efflux of cystine. Cysteamine bitartrate is a cystine-depleting aminothiol agent approved for the treatment of cystinosis in children and adults. In this study, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of cysteamine levels in plasma samples. This LC-MS/MS method was validated according to the European Medicines Agency (EMA)'s guidelines for bioanalytical method validation. An ultra-performance liquid chromatograph (UPLC) coupled with a 6470 mass spectrometry system was used for cysteamine determination. Our validated method was applied to plasma samples from n = 8 cystinosis patients (median, interquartile range (IQR) = 20.5, 8.5-26.0 years). The samples were collected before cysteamine oral administration (pre-dose) and 1 h after (post-dose). Our bioanalytical method fulfilled the regulatory guidelines for method validation. The cysteamine plasma levels in pre-dose samples were 2.57 and 1.50-3.31 µM (median and IQR, respectively), whereas the post-dose samples reported a cysteamine median concentration of 28.00 µM (IQR: 17.60-36.61). Our method allows the rapid determination of cysteamine plasma levels. This method was successfully used in cystinosis patients and, therefore, could be a useful tool for the evaluation of therapy adherence and for future pharmacokinetic (PK) studies involving a higher number of subjects.

6.
Orphanet J Rare Dis ; 19(1): 3, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167094

RESUMEN

BACKGROUND: Ornithine Transcarbamylase Deficiency (OTCD) is an X-linked urea cycle disorder characterized by acute hyperammonemic episodes. Hemizygous males are usually affected by a severe/fatal neonatal-onset form or, less frequently, by a late-onset form with milder disease course, depending on the residual enzymatic activity. Hyperammonemia can occur any time during life and patients could remain non- or mis-diagnosed due to unspecific symptoms. In heterozygous females, clinical presentation varies based on the extent of X chromosome inactivation. Maternal transmission in X-linked disease is the rule, but in late-onset OTCD, due to the milder phenotype of affected males, paternal transmission to the females is possible. So far, father-to-daughter transmission of OTCD has been reported only in 4 Japanese families. RESULTS: We identified in 2 Caucasian families, paternal transmission of late-onset OTCD with severe/fatal outcome in affected males and 1 heterozygous female. Furthermore, we have reassessed the pedigrees of other published reports in 7 additional families with evidence of father-to-daughter inheritance of OTCD, identifying and listing the family members for which this transmission occurred. CONCLUSIONS: Our study highlights how the diagnosis and pedigree analysis of late-onset OTCD may represent a real challenge for clinicians. Therefore, the occurrence of paternal transmission in OTCD should not be underestimated, due to the relevant implications for disease inheritance and risk of recurrence.


Asunto(s)
Hiperamonemia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Masculino , Recién Nacido , Humanos , Femenino , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Núcleo Familiar , Hiperamonemia/genética , Heterocigoto , Padre , Ornitina Carbamoiltransferasa/genética
7.
Eur J Endocrinol ; 189(5): 485-494, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37815532

RESUMEN

OBJECTIVE: Single Large Scale Mitochondrial DNA Deletions (SLSMDs), Pearson Syndrome (PS) and Kearns-Sayre Syndrome (KSS), are systemic diseases with multiple endocrine abnormalities. The adrenocortical function has not been systematically investigated with a few anecdotal reports of overt adrenal insufficiency (AI). The study aimed to assess the adrenocortical function in a large cohort of SLSMDs. DESIGN AND METHODS: A retrospective monocentric longitudinal study involved a cohort of 18 SLSMDs patients. Adrenocortical function was evaluated by baseline adrenocorticotrophic hormone (ACTH) and cortisol measurements and by high- (HDT) and low-dose (LDT) ACTH stimulation tests and compared with 92 healthy controls (HC). RESULTS: Baseline adrenocortical function was impaired in 39% of patients and by the end of the study, 66% of PS and 25% of KSS showed an insufficient increase after ACTH stimulation, with cortisol deficiency due to primary AI in most PS and subclinical AI in KSS. Symptomatic AI was recorded in 44% of patients. Peak cortisol levels after ACTH stimulation tests were significantly lower in patients than in HC (P < .0001), with a more reduced response to LDT vs HDT (P < .05). CONCLUSIONS: Our study highlights that cortisol deficiency due to primary AI represents a relevant part of the clinical spectrum in SLSMDs, with more severe impairment in PS than in KSS. Basal and after-stimulus assessment of adrenocortical axis should be early and regularly investigated to identify any degree of adrenocortical dysfunction. The study allowed the elaboration of a diagnostic process designed for the diagnosis, treatment, and follow-up of adrenocortical abnormalities in SLSMDs.


Asunto(s)
Insuficiencia Suprarrenal , Hidrocortisona , Humanos , Estudios Retrospectivos , Estudios de Cohortes , Estudios Longitudinales , Hormona Adrenocorticotrópica , Insuficiencia Suprarrenal/diagnóstico , Insuficiencia Suprarrenal/genética , ADN Mitocondrial/genética
8.
Pharmacol Res ; 197: 106952, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37804926

RESUMEN

Cognitive and psychiatric disorders are well documented across the lifetime of patients with inborn errors of metabolism (IEMs). Gut microbiota impacts behavior and cognitive functions through the gut-brain axis (GBA). According to recent research, a broad spectrum of GBA disorders may be influenced by a perturbed Tryptophan (Trp) metabolism and are associated with alterations in composition or function of the gut microbiota. Furthermore, early-life diets may influence children's neurodevelopment and cognitive deficits in adulthood. In Phenylketonuria (PKU), since the main therapeutic intervention is based on a life-long restrictive diet, important alterations of gut microbiota have been observed. Studies on PKU highlight the impact of alterations of gut microbiota on the central nervous system (CNS), also investigating the involvement of metabolic pathways, such as Trp and kynurenine (KYN) metabolisms, involved in numerous neurodegenerative disorders. An alteration of Trp metabolism with an imbalance of the KYN pathway towards the production of neurotoxic metabolites implicated in numerous neurodegenerative and inflammatory diseases has been observed in PKU patients supplemented with Phe-free amino acid medical foods (AA-MF). The present review investigates the possible link between gut microbiota and the brain in IEMs, focusing on Trp metabolism in PKU. Considering the evidence collected, cognitive and behavioral well-being should always be monitored in routine IEMs clinical management. Further studies are required to evaluate the possible impact of Trp metabolism, through gut microbiota, on cognitive and behavioral functions in IEMs, to identify innovative dietetic strategies and improve quality of life and mental health of these patients.


Asunto(s)
Eje Cerebro-Intestino , Fenilcetonurias , Niño , Humanos , Triptófano , Calidad de Vida , Cognición
9.
J Inherit Metab Dis ; 46(5): 906-915, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37395264

RESUMEN

Organic acidurias (OAs), urea-cycle disorders (UCDs), and maple syrup urine disease (MSUD) belong to the category of intoxication-type inborn errors of metabolism (IT-IEM). Liver transplantation (LTx) is increasingly utilized in IT-IEM. However, its impact has been mainly focused on clinical outcome measures and rarely on health-related quality of life (HRQoL). Aim of the study was to investigate the impact of LTx on HrQoL in IT-IEMs. This single center prospective study involved 32 patients (15 OA, 11 UCD, 6 MSUD; median age at LTx 3.0 years, range 0.8-26.0). HRQoL was assessed pre/post transplantation by PedsQL-General Module 4.0 and by MetabQoL 1.0, a specifically designed tool for IT-IEM. PedsQL highlighted significant post-LTx improvements in total and physical functioning in both patients' and parents' scores. According to age at transplantation (≤3 vs. >3 years), younger patients showed higher post-LTx scores on Physical (p = 0.03), Social (p < 0.001), and Total (p =0.007) functioning. MetabQoL confirmed significant post-LTx changes in Total and Physical functioning in both patients and parents scores (p ≤ 0.009). Differently from PedsQL, MetabQoL Mental (patients p = 0.013, parents p = 0.03) and Social scores (patients p = 0.02, parents p = 0.012) were significantly higher post-LTx. Significant improvements (p = 0.001-0.04) were also detected both in self- and proxy-reports for almost all MetabQoL subscales. This study shows the importance of assessing the impact of transplantation on HrQoL, a meaningful outcome reflecting patients' wellbeing. LTx is associated with significant improvements of HrQol in both self- and parent-reports. The comparison between PedsQL-GM and MetabQoL highlighted that MetabQoL demonstrated higher sensitivity in the assessment of disease-specific domains than the generic PedsQL tool.


Asunto(s)
Trasplante de Hígado , Enfermedad de la Orina de Jarabe de Arce , Trastornos Innatos del Ciclo de la Urea , Humanos , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Calidad de Vida , Estudios Prospectivos , Enfermedad de la Orina de Jarabe de Arce/cirugía , Padres
10.
Mol Metab ; 74: 101752, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37308077

RESUMEN

BACKGROUND: Insulin, secreted from pancreatic islets of Langerhans, is of critical importance in regulating glucose homeostasis. Defective insulin secretion and/or the inability of tissues to respond to insulin results in insulin resistance and to several metabolic and organ alterations. We have previously demonstrated that BAG3 regulates insulin secretion. Herein we explored the consequences of beta-cells specific BAG3 deficiency in an animal model. METHODS: We generated a beta-cells specific BAG3 knockout mouse model. Glucose and insulin tolerance tests, proteomics, metabolomics, and immunohistochemical analysis were used to investigate the role of BAG3 in regulating insulin secretion and the effects of chronic exposure to excessive insulin release in vivo. RESULTS: Beta-cells specific BAG3 knockout results in primary hyperinsulinism due to excessive insulin exocytosis finally leading to insulin resistance. We demonstrate that resistance is mainly muscle-dependent while the liver remains insulin sensitive. The chronically altered metabolic condition leads in time to histopathological alterations in different organs. We observe elevated glycogen and lipid accumulation in the liver reminiscent of non-alcoholic fatty liver disease as well as mesangial matrix expansion and thickening of the glomerular basement membrane, resembling the histology of chronic kidney disease. CONCLUSION: Altogether, this study shows that BAG3 plays a role in insulin secretion and provides a model for the study of hyperinsulinemia and insulin resistance.


Asunto(s)
Hiperinsulinismo , Resistencia a la Insulina , Células Secretoras de Insulina , Ratones , Animales , Resistencia a la Insulina/genética , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Glucosa/metabolismo , Ratones Noqueados
11.
Children (Basel) ; 10(6)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37371303

RESUMEN

Molybdenum cofactor deficiency (MoCD) is a rare and severe autosomal recessive in-born error of metabolism caused by the mutation in MOCS1, MOCS2, MOCS3 or GEPH genes, with an incidence ranging between 1 in 100,000 and 200,000 live births. The clinical presentation with seizures, lethargy and neurologic deficits reflects the neurotoxicity mediated via sulphite accumulation, and it occurs within the first hours or days after birth, often leading to severe neurodegeneration and the patient's death within days or months. The Imaging of Choice is a brain-specific MRI technique, which is usually performed without contrast and shows typical radiological findings in the early phase, such as diffuse cerebral oedema and infarction affecting the cortex and the basal ganglia and the white matter, as well as in the late phase, such as multicystic encephalomalacia. Our case report represents a novelty in the field, since the patient underwent a contrast-enhanced MRI to exclude a concomitant infectious disease. In the frame of the clinical presentation and laboratory data, we describe the MoCD Imaging findings for MRI morphological and advanced sequences, presenting a new contrast-enhanced MRI pattern characterized by the diffuse and linear leptomeningeal enhancement of brain, cord and spinal roots. The early identification of molybdenum cofactor deficiency is crucial because it may lead to the best multidisciplinary therapy for the patient, which is focused on the prompt and optimal management of the complications.

12.
Front Endocrinol (Lausanne) ; 14: 1145111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152929

RESUMEN

Glycogen storage type Ib (GSDIb) is a rare inborn error of metabolism caused by glucose-6-phosphate transporter (G6PT, SLC37A4) deficiency. G6PT defect results in excessive accumulation of glycogen and fat in the liver, kidney, and intestinal mucosa and into both glycogenolysis and gluconeogenesis impairment. Clinical features include hepatomegaly, hypoglycemia, lactic acidemia, hyperuricemia, hyperlipidemia, and growth retardation. Long-term complications are liver adenoma, hepatocarcinoma, nephropathy and osteoporosis. The hallmark of GSDIb is neutropenia, with impaired neutrophil function, recurrent infections and inflammatory bowel disease. Alongside classical nutritional therapy with carbohydrates supplementation and immunological therapy with granulocyte colony-stimulating factor, the emerging role of 1,5-anhydroglucitol in the pathogenesis of neutrophil dysfunction led to repurpose empagliflozin, an inhibitor of the renal glucose transporter SGLT2: the current literature of its off-label use in GSDIb patients reports beneficial effects on neutrophil dysfunction and its clinical consequences. Surprisingly, this glucose-lowering drug ameliorated the glycemic and metabolic control in GSDIb patients. Furthermore, numerous studies from big cohorts of type 2 diabetes patients showed the efficacy of empagliflozin in reducing the cardiovascular risk, the progression of kidney disease, the NAFLD and the metabolic syndrome. Beneficial effects have also been described on peripheral neuropathy in a prediabetic rat model. Increasing evidences highlight the role of empagliflozin in regulating the cellular energy sensors SIRT1/AMPK and Akt/mTOR, which leads to improvement of mitochondrial structure and function, stimulation of autophagy, decrease of oxidative stress and suppression of inflammation. Modulation of these pathways shift the oxidative metabolism from carbohydrates to lipids oxidation and results crucial in reducing insulin levels, insulin resistance, glucotoxicity and lipotoxicity. For its pleiotropic effects, empagliflozin appears to be a good candidate for drug repurposing also in other metabolic diseases presenting with hypoglycemia, organ damage, mitochondrial dysfunction and defective autophagy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Almacenamiento de Glucógeno Tipo I , Hipoglucemia , Ratas , Animales , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Enfermedad del Almacenamiento de Glucógeno Tipo I/tratamiento farmacológico , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Glucósidos/uso terapéutico , Glucosa , Glucógeno
13.
J Inherit Metab Dis ; 46(4): 554-572, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37243446

RESUMEN

Methylmalonic Acidemia (MMA) is a heterogenous group of inborn errors of metabolism caused by a defect in the methylmalonyl-CoA mutase (MMUT) enzyme or the synthesis and transport of its cofactor, 5'-deoxy-adenosylcobalamin. It is characterized by life-threatening episodes of ketoacidosis, chronic kidney disease, and other multiorgan complications. Liver transplantation can improve patient stability and survival and thus provides clinical and biochemical benchmarks for the development of hepatocyte-targeted genomic therapies. Data are presented from a US natural history protocol that evaluated subjects with different types of MMA including mut-type (N = 91), cblB-type (15), and cblA-type MMA (17), as well as from an Italian cohort of mut-type (N = 19) and cblB-type MMA (N = 2) subjects, including data before and after organ transplantation in both cohorts. Canonical metabolic markers, such as serum methylmalonic acid and propionylcarnitine, are variable and affected by dietary intake and renal function. We have therefore explored the use of the 1-13 C-propionate oxidation breath test (POBT) to measure metabolic capacity and the changes in circulating proteins to assess mitochondrial dysfunction (fibroblast growth factor 21 [FGF21] and growth differentiation factor 15 [GDF15]) and kidney injury (lipocalin-2 [LCN2]). Biomarker concentrations are higher in patients with the severe mut0 -type and cblB-type MMA, correlate with a decreased POBT, and show a significant response postliver transplant. Additional circulating and imaging markers to assess disease burden are necessary to monitor disease progression. A combination of biomarkers reflecting disease severity and multisystem involvement will be needed to help stratify patients for clinical trials and assess the efficacy of new therapies for MMA.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Humanos , Mutación , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Biomarcadores , Progresión de la Enfermedad , Ácido Metilmalónico , Metilmalonil-CoA Mutasa/genética , Metilmalonil-CoA Mutasa/metabolismo
14.
J Inherit Metab Dis ; 46(3): 466-481, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37067856

RESUMEN

Propionic (PA) and methylmalonic aciduria (MMA) share many clinical similarities, which include the risk of acute metabolic encephalopathies, and some long-term complications, such as optic neuropathy, pancreatic involvement, developmental disability, and similar management approaches, but they also represent distinct clinical and biochemical entities. In the severe forms of PA and MMA, most long-term complications cannot be prevented with conventional clinical management. Organ transplantation represents a form of partial enzyme replacement to improve the long-term outlook for these disorders. There is evidence that early liver transplant in both disorders greatly improves metabolic stability and reduces the risk of long-term complications. For MMA, early liver transplant reduces methylmalonic acid levels which in turns reduces its effects on kidneys, and therefore slows progression of chronic kidney disease. However, established organ damage cannot be reversed. For patients with MMA who present with chronic kidney disease, consideration should be given for combined liver and kidney transplants. Transplantation in PA and MMA carries a high risk of complications and requires highly specialised pre-operative and peri-operative management. Involvement of a multidisciplinary team is essential and should include metabolic team, nephrologist, hepatologist, hepatobiliary and renal transplant surgeons, anaesthesiologists, cardiologists, intensive care team, dieticians and specialist nurses. These patients require life-long multidisciplinary follow-up. There is increasing evidence in the literature on excellent short to medium-term patient and allograft survival following transplantation when patients are managed by a multidisciplinary team in a specialist centre. Improved early diagnosis and reductions in transplant-related mortality and morbidity have allowed early transplantation to be used electively to further improve the outcome.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Trasplante de Riñón , Trasplante de Hígado , Acidemia Propiónica , Insuficiencia Renal Crónica , Humanos , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Trasplante de Riñón/efectos adversos , Insuficiencia Renal Crónica/complicaciones , Ácido Metilmalónico , Acidemia Propiónica/diagnóstico
15.
Intern Emerg Med ; 18(3): 831-842, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36882619

RESUMEN

Acid sphingomyelinase deficiency (ASMD) is an ultra-rare disease, and several gaps of knowledge on various issues remain, particularly at a regional/national level. Expert opinions collected through well-defined consensus methodologies are increasingly used to make available reliable information in the context of rare/ultra-rare diseases. With the aim to provide indications on infantile neurovisceral ASMD (also formerly known as Niemann-Pick disease type A), chronic neurovisceral ASMD (formerly known as Niemann-Pick disease type A/B) and chronic visceral ASMD (formerly known as Niemann-Pick disease type B) in Italy, we conducted a Delphi consensus of experts focused on five main areas: (i) patients and disease characteristics; (ii) unmet needs and quality of life; (iii) diagnostic issues; (iv) treatment-related aspects; and (v) patient journey. Pre-specified, objective criteria were used to outline the multidisciplinary panel, based on 19 Italian experts in ASMD in paediatric and adult patients from different Italian Regions, including both clinicians (n = 16) and ASMD patients' advocacy or payors with expertise in rare diseases (n = 3). During two Delphi rounds, a high ratio of agreement was found on several topics related to ASMD characteristics, diagnosis, management and disease burden. Our findings may provide valuable indications for management of ASMD at a public health level in Italy.


Asunto(s)
Enfermedad de Niemann-Pick Tipo A , Enfermedades de Niemann-Pick , Adulto , Humanos , Niño , Enfermedad de Niemann-Pick Tipo A/diagnóstico , Esfingomielina Fosfodiesterasa , Calidad de Vida , Consenso , Enfermedades Raras , Técnica Delphi , Italia
16.
J Inherit Metab Dis ; 46(3): 450-465, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36861405

RESUMEN

Liver and liver/kidney transplantation are increasingly used in methylmalonic aciduria, but little is known on their impact on CNS. The effect of transplantation on neurological outcome was prospectively assessed in six patients pre- and post-transplant by clinical evaluation and by measuring disease biomarkers in plasma and CSF, in combination with psychometric tests and brain MRI studies. Primary (methylmalonic- and methylcitric acid) and secondary biomarkers (glycine and glutamine) significantly improved in plasma, while they remained unchanged in CSF. Differently, biomarkers of mitochondrial dysfunction (lactate, alanine, and related ratios) significantly decreased in CSF. Neurocognitive evaluation documented significant higher post-transplant developmental/cognitive scores and maturation of executive functions corresponding to improvement of brain atrophy, cortical thickness, and white matter maturation indexes at MRI. Three patients presented post-transplantation reversible neurological events, which were differentiated, by means of biochemical and neuroradiological evaluations, into calcineurin inhibitor-induced neurotoxicity and metabolic stroke-like episode. Our study shows that transplantation has a beneficial impact on neurological outcome in methylmalonic aciduria. Early transplantation is recommended due to the high risk of long-term complications, high disease burden, and low quality of life.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Trasplante de Hígado , Humanos , Calidad de Vida , Biomarcadores , Ácido Láctico , Ácido Metilmalónico
17.
Epilepsia ; 64(6): 1612-1626, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36994644

RESUMEN

OBJECTIVE: Argininosuccinate lyase (ASL) is integral to the urea cycle, which enables nitrogen wasting and biosynthesis of arginine, a precursor of nitric oxide. Inherited ASL deficiency causes argininosuccinic aciduria, the second most common urea cycle defect and an inherited model of systemic nitric oxide deficiency. Patients present with developmental delay, epilepsy, and movement disorder. Here we aim to characterize epilepsy, a common and neurodebilitating comorbidity in argininosuccinic aciduria. METHODS: We conducted a retrospective study in seven tertiary metabolic centers in the UK, Italy, and Canada from 2020 to 2022, to assess the phenotype of epilepsy in argininosuccinic aciduria and correlate it with clinical, biochemical, radiological, and electroencephalographic data. RESULTS: Thirty-seven patients, 1-31 years of age, were included. Twenty-two patients (60%) presented with epilepsy. The median age at epilepsy onset was 24 months. Generalized tonic-clonic and focal seizures were most common in early-onset patients, whereas atypical absences were predominant in late-onset patients. Seventeen patients (77%) required antiseizure medications and six (27%) had pharmacoresistant epilepsy. Patients with epilepsy presented with a severe neurodebilitating disease with higher rates of speech delay (p = .04) and autism spectrum disorders (p = .01) and more frequent arginine supplementation (p = .01) compared to patients without epilepsy. Neonatal seizures were not associated with a higher risk of developing epilepsy. Biomarkers of ureagenesis did not differ between epileptic and non-epileptic patients. Epilepsy onset in early infancy (p = .05) and electroencephalographic background asymmetry (p = .0007) were significant predictors of partially controlled or refractory epilepsy. SIGNIFICANCE: Epilepsy in argininosuccinic aciduria is frequent, polymorphic, and associated with more frequent neurodevelopmental comorbidities. We identified prognostic factors for pharmacoresistance in epilepsy. This study does not support defective ureagenesis as prominent in the pathophysiology of epilepsy but suggests a role of central dopamine deficiency. A role of arginine in epileptogenesis was not supported and warrants further studies to assess the potential arginine neurotoxicity in argininosuccinic aciduria.


Asunto(s)
Aciduria Argininosuccínica , Epilepsia , Humanos , Aciduria Argininosuccínica/complicaciones , Aciduria Argininosuccínica/genética , Aciduria Argininosuccínica/metabolismo , Estudios Retrospectivos , Óxido Nítrico , Arginina/metabolismo , Arginina/uso terapéutico , Epilepsia/complicaciones , Epilepsia/epidemiología , Epilepsia/tratamiento farmacológico , Urea , Convulsiones/tratamiento farmacológico
18.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38203665

RESUMEN

We describe the complex case of a 44-year-old man with polycystic kidney disease, mild cognitive impairment, and tremors in the upper limbs. Brain MRI showed lesions compatible with leukodystrophy. The diagnostic process, which included clinical exome sequencing (CES) and chromosomal microarray analysis (CMA), revealed a triple diagnosis: autosomal dominant polycystic kidney disease (ADPKD) due to a pathogenic variant, c.2152C>T-p.(Gln718Ter), in the PKD1 gene; late-onset phenylketonuria due to the presence of two missense variants, c.842C>T-p.(Pro281Leu) and c.143T>C-p.(Leu48Ser) in the PAH gene; and a 915 Kb duplication on chromosome 15. Few patients with multiple concurrent genetic diagnoses are reported in the literature; in this ADPKD patient, genome-wide analysis allowed for the diagnosis of adult-onset phenylketonuria (which would have otherwise gone unnoticed) and a 15q11.2 duplication responsible for cognitive and behavioral impairment with incomplete penetrance. This case underlines the importance of clinical genetics for interpreting complex results obtained by genome-wide techniques, and for diagnosing concurrent late-onset monogenic conditions.


Asunto(s)
Disfunción Cognitiva , Enfermedades Desmielinizantes , Discapacidad Intelectual , Trastornos del Metabolismo de los Lípidos , Enfermedades por Almacenamiento Lisosomal , Enfermedades Neurodegenerativas , Fenilcetonurias , Riñón Poliquístico Autosómico Dominante , Adulto , Masculino , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Cromosomas Humanos Par 15 , Enfermedades de Inicio Tardío
19.
Redox Biol ; 58: 102517, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36306676

RESUMEN

Regulation of H2S homeostasis in humans is poorly understood. Therefore, we assessed the importance of individual enzymes in synthesis and catabolism of H2S by studying patients with respective genetic defects. We analyzed sulfur compounds (including bioavailable sulfide) in 37 untreated or insufficiently treated patients with seven ultrarare enzyme deficiencies and compared them to 63 controls. Surprisingly, we observed that patients with severe deficiency in cystathionine ß-synthase (CBS) or cystathionine γ-lyase (CSE) - the enzymes primarily responsible for H2S synthesis - exhibited increased and normal levels of bioavailable sulfide, respectively. However, an approximately 21-fold increase of urinary homolanthionine in CBS deficiency strongly suggests that lacking CBS activity is compensated for by an increase in CSE-dependent H2S synthesis from accumulating homocysteine, which suggests a control of H2S homeostasis in vivo. In deficiency of sulfide:quinone oxidoreductase - the first enzyme in mitochondrial H2S oxidation - we found normal H2S concentrations in a symptomatic patient and his asymptomatic sibling, and elevated levels in an asymptomatic sibling, challenging the requirement for this enzyme in catabolizing H2S under physiological conditions. Patients with ethylmalonic encephalopathy and sulfite oxidase/molybdenum cofactor deficiencies exhibited massive accumulation of thiosulfate and sulfite with formation of large amounts of S-sulfocysteine and S-sulfohomocysteine, increased renal losses of sulfur compounds and concomitant strong reduction in plasma total cysteine. Our results demonstrate the value of a comprehensive assessment of sulfur compounds in severe disorders of homocysteine/cysteine metabolism and provide evidence for redundancy and compensatory mechanisms in the maintenance of H2S homeostasis.


Asunto(s)
Sulfuro de Hidrógeno , Humanos , Sulfuro de Hidrógeno/metabolismo , Cisteína , Sulfuros/metabolismo , Homeostasis , Azufre , Homocisteína
20.
Pharmaceutics ; 14(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36297665

RESUMEN

Quinidine (QND) is an old antimalarial drug that was used in the early 20th century as an antiarrhythmic agent. Currently, QND is receiving attention for its use in epilepsy of infancy with migrating focal seizures (EIMFS) due to potassium sodium-activated channel subfamily T member 1 (KCNT1) genetic variants. Here, we report the application of Therapeutic Drug Monitoring (TDM) in pediatric patients carrying KCNT1 genetic variants and orally treated with QND for developmental and epileptic encephalopathies (DEE). We measured plasma levels of QND and its metabolite hydroquinidine (H-QND) by using a validated method based on liquid chromatography coupled with mass spectrometry (LC-MS/MS). Three pediatric patients (median age 4.125 years, IQR 2.375-4.125) received increasing doses of QND. Cardiac toxicity was monitored at every dose change. Reduction in seizure frequency ranged from 50 to 90%. Our results show that QND is a promising drug for pediatric patients with DEE due to KCNT1 genetic variants. Although QND blood levels were significantly lower than the therapeutic range as an anti-arrhythmic drug, patients showed a significant improvement in seizure burden. These data underlie the utility of TDM for QND not only to monitor its toxic effects but also to evaluate possible drug-drug interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...