Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6683, 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865649

RESUMEN

Coherent many-body states are highly promising for robust quantum information processing. While far-reaching theoretical predictions have been made for various implementations, direct experimental evidence of their appealing properties can be challenging. Here, we demonstrate optical manipulation of the nuclear spin ensemble in the lead halide perovskite semiconductor FAPbBr3 (FA = formamidinium), targeting a long-postulated collective dark state that is insensitive to optical pumping after its build-up. Via optical orientation of localized hole spins we drive the nuclear many-body system into this entangled state, requiring a weak magnetic field of only a few milli-Tesla strength at cryogenic temperatures. During its fast establishment, the nuclear polarization along the optical axis remains small, while the transverse nuclear spin fluctuations are strongly reduced, corresponding to spin squeezing as evidenced by a strong violation of the generalized nuclear squeezing-inequality with ξs < 0.5. The dark state corresponds to an ~35-body entanglement between the nuclei. Dark nuclear spin states can be exploited to store quantum information benefiting from their long-lived many-body coherence and to perform quantum measurements with a precision beyond the standard limit.

2.
Nat Commun ; 13(1): 3062, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654813

RESUMEN

The Landé or g-factors of charge carriers are decisive for the spin-dependent phenomena in solids and provide also information about the underlying electronic band structure. We present a comprehensive set of experimental data for values and anisotropies of the electron and hole Landé factors in hybrid organic-inorganic (MAPbI3, MAPb(Br0.5Cl0.5)3, MAPb(Br0.05Cl0.95)3, FAPbBr3, FA0.9Cs0.1PbI2.8Br0.2, MA=methylammonium and FA=formamidinium) and all-inorganic (CsPbBr3) lead halide perovskites, determined by pump-probe Kerr rotation and spin-flip Raman scattering in magnetic fields up to 10 T at cryogenic temperatures. Further, we use first-principles density functional theory (DFT) calculations in combination with tight-binding and k ⋅ p approaches to calculate microscopically the Landé factors. The results demonstrate their universal dependence on the band gap energy across the different perovskite material classes, which can be summarized in a universal semi-phenomenological expression, in good agreement with experiment.

3.
Phys Rev Lett ; 124(20): 206402, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32501104

RESUMEN

Lead-halide perovskite (LHP) semiconductors are emergent optoelectronic materials with outstanding transport properties which are not yet fully understood. We find signatures of large polaron formation in the electronic structure of the inorganic LHP CsPbBr_{3} by means of angle-resolved photoelectron spectroscopy. The experimental valence band dispersion shows a hole effective mass of 0.26±0.02 m_{e}, 50% heavier than the bare mass m_{0}=0.17 m_{e} predicted by density functional theory. Calculations of the electron-phonon coupling indicate that phonon dressing of the carriers mainly occurs via distortions of the Pb-Br bond with a Fröhlich coupling parameter α=1.81. A good agreement with our experimental data is obtained within the Feynman polaron model, validating a viable theoretical method to predict the carrier effective mass of LHPs ab initio.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...