Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2403691, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884160

RESUMEN

Quantum technologic and spintronic applications require reliable material platforms that enable significant and long-living spin polarization of excitations, the ability to manipulate it optically in external fields, and the possibility to implement quantum correlations between spins, i.e., entanglement. Here it is demonstrated that these conditions are met in bulk crystals of lead halide perovskites. A giant optical orientation of 85% of excitons, approaching the ultimate limit of unity, in FA0.9Cs0.1PbI2.8Br0.2 crystals is reported. The exciton spin orientation is maintained during the exciton lifetime of 55 ps resulting in high circular polarization of the exciton emission. The optical orientation is robust to detuning of the excitation energy up to 0.3 eV above the exciton resonance and remains larger than 20% up to detunings of 0.9 eV. It evidences pure chiral selection rules and suppressed spin relaxation of electrons and holes, even with large kinetic energies. The exciton and electron-hole recombinations are distinguished by means of the spin dynamics detected via coherent spin quantum beats in magnetic field. Further, electron-hole spin correlations are demonstrated through linear polarization beats after circularly polarized excitation. These findings are supported by atomistic calculations. All-in-all, the results establish lead halide perovskite semiconductors as suitable platform for quantum technologies.

2.
ACS Nano ; 18(26): 17218-17227, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38904261

RESUMEN

Lead halide perovskite quantum dots (QDs), the latest generation of the colloidal QD family, exhibit outstanding optical properties, which are now exploited as both classical and quantum light sources. Most of their rather exceptional properties are related to the peculiar exciton fine-structure of band-edge states, which can support unique bright triplet excitons. The degeneracy of the bright triplet excitons is lifted with energetic splitting in the order of millielectronvolts, which can be resolved by the photoluminescence (PL) measurements of single QDs at cryogenic temperatures. Each bright exciton fine-structure-state (FSS) exhibits a dominantly linear polarization, in line with several theoretical models based on the sole crystal field, exchange interaction, and shape anisotropy. Here, we show that in addition to a high degree of linear polarization, the individual exciton FSS can exhibit a non-negligible degree of circular polarization even without external magnetic fields by investigating the four Stokes parameters of the exciton fine-structure in individual CsPbBr3 QDs through Stokes polarimetric measurements. We observe a degree of circular polarization up to ∼38%, which could not be detected by using the conventional polarimetric technique. In addition, we found a consistent transition from left- to right-hand circular polarization within the fine-structure triplet manifold, which was observed in magnetic-field-dependent experiments. Our optical investigation provides deeper insights into the nature of the exciton fine structures and thereby drives the yet-incomplete understanding of the unique photophysical properties of this class of QDs for the benefit of future applications in chiral quantum optics.

3.
J Phys Chem Lett ; 15(23): 6062-6068, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38820135

RESUMEN

Semiconductor nanocrystals (NCs) with size-tuned energy gaps present unique and desirable properties for optoelectronic applications. Recent synthetic advancements offer routes to spheroidal CsPbBr3 perovskite NCs in the strong quantum confinement regime with narrow size dispersion. Using tunable femtosecond laser pulses, we examine intraband carrier relaxation using transient absorption spectroscopy and show that, across the transition from weak to strong confinement, hot carrier lifetime increases compared to larger bulk-like particles. However, further increases of confinement subsequently lead to a reduction of the hot carrier lifetime and increase of the non-radiative Auger recombination rate. Finally, we show that hot carrier lifetimes increase as a function of excess energy above the band gap less sensitively under high confinement in comparison to the bulk. Understanding such unique trends is important for maximizing hot carrier lifetimes for use in next-generation hot carrier devices as well as evaluating the transition from weak to strong confinement.

4.
ACS Nano ; 18(14): 9997-10007, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38547379

RESUMEN

Colloidal quantum dots (QDs) are promising regenerable photoredox catalysts offering broadly tunable redox potentials along with high absorption coefficients. QDs have thus far been examined for various organic transformations, water splitting, and CO2 reduction. Vast opportunities emerge from coupling QDs with other homogeneous catalysts, such as transition metal complexes or organic dyes, into hybrid nanoassemblies exploiting energy transfer (ET), leveraging a large absorption cross-section of QDs and long-lived triplet states of cocatalysts. However, a thorough understanding and further engineering of the complex operational mechanisms of hybrid nanoassemblies require simultaneously controlling the surface chemistry of the QDs and probing dynamics at sufficient spatiotemporal resolution. Here, we probe the ET from single lead halide perovskite QDs, capped by alkylphospholipid ligands, to organic dye molecules employing single-particle photoluminescence spectroscopy with single-photon resolution. We identify a Förster-type ET by spatial, temporal, and photon-photon correlations in the QD and dye emission. Discrete quenching steps in the acceptor emission reveal stochastic photobleaching events of individual organic dyes, allowing a precise quantification of the transfer efficiency, which is >70% for QD-dye complexes with strong donor-acceptor spectral overlap. Our work explores the processes occurring at the QD/molecule interface and demonstrates the feasibility of sensitizing organic photocatalysts with QDs.

5.
J Phys Chem Lett ; 15(10): 2893-2903, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38448798

RESUMEN

Coherent spin dynamics of electrons and holes are studied in hybrid organic-inorganic lead halide perovskite FAPbBr3 bulk single crystals using the time-resolved Kerr ellipticity technique at cryogenic temperatures. The Larmor spin precession of the carrier spins in a magnetic field is monitored to measure the Landé g-factors of electrons (+2.44) and holes (+0.41). These g-factors are highly isotropic. The measured spin dephasing times amount to a few nanoseconds, and the longitudinal hole spin relaxation time is 470 ns. The important role of the strong hyperfine interaction between carrier spins and nuclear spins is demonstrated via dynamic nuclear polarization. At low temperatures, electron and hole spin relaxation predominantly occurs via the hyperfine interaction, whose importance significantly decreases at temperatures above 12 K. We overview the spin dynamics in various lead halide perovskite crystals and polycrystalline films and conclude on their common features provided by charge carrier localization at cryogenic temperatures.

6.
ACS Nano ; 18(6): 4922-4931, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38301147

RESUMEN

Strong coupling between lead halide perovskite materials and optical resonators enables both polaritonic control of the photophysical properties of these emerging semiconductors and the observation of fundamental physical phenomena. However, the difficulty in achieving optical-quality perovskite quantum dot (PQD) films showing well-defined excitonic transitions has prevented the study of strong light-matter coupling in these materials, central to the field of optoelectronics. Herein we demonstrate the formation at room temperature of multiple cavity exciton-polaritons in metallic resonators embedding highly transparent Cesium Lead Bromide quantum dot (CsPbBr3-QD) solids, revealed by a significant reconfiguration of the absorption and emission properties of the system. Our results indicate that the effects of biexciton interaction or large polaron formation, frequently invoked to explain the properties of PQDs, are seemingly absent or compensated by other more conspicuous effects in the CsPbBr3-QD optical cavity. We observe that strong coupling enables a significant reduction of the photoemission line width, as well as the ultrafast modulation of the optical absorption, controllable by means of the excitation fluence. We find that the interplay of the polariton states with the large dark state reservoir plays a decisive role in determining the dynamics of the emission and transient absorption properties of the hybridized light-quantum dot solid system. Our results should serve as the basis for future investigations of PQD solids as polaritonic materials.

7.
Nature ; 626(7999): 535-541, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297126

RESUMEN

The brightness of an emitter is ultimately described by Fermi's golden rule, with a radiative rate proportional to its oscillator strength times the local density of photonic states. As the oscillator strength is an intrinsic material property, the quest for ever brighter emission has relied on the local density of photonic states engineering, using dielectric or plasmonic resonators1,2. By contrast, a much less explored avenue is to boost the oscillator strength, and hence the emission rate, using a collective behaviour termed superradiance. Recently, it was proposed3 that the latter can be realized using the giant oscillator-strength transitions of a weakly confined exciton in a quantum well when its coherent motion extends over many unit cells. Here we demonstrate single-photon superradiance in perovskite quantum dots with a sub-100 picosecond radiative decay time, almost as short as the reported exciton coherence time4. The characteristic dependence of radiative rates on the size, composition and temperature of the quantum dot suggests the formation of giant transition dipoles, as confirmed by effective-mass calculations. The results aid in the development of ultrabright, coherent quantum light sources and attest that quantum effects, for example, single-photon emission, persist in nanoparticles ten times larger than the exciton Bohr radius.

8.
Small ; 20(16): e2300935, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009504

RESUMEN

The optical properties of lead halide perovskite semiconductors in vicinity of the bandgap are controlled by excitons, so that investigation of their fundamental properties is of critical importance. The exciton Landé or g-factor gX is the key parameter, determining the exciton Zeeman spin splitting in magnetic fields. The exciton, electron, and hole carrier g-factors provide information on the band structure, including its anisotropy, and the parameters contributing to the electron and hole effective masses. Here, gX is measured by reflectivity in magnetic fields up to 60 T for lead halide perovskite crystals. The materials band gap energies at a liquid helium temperature vary widely across the visible spectral range from 1.520 up to 3.213 eV in hybrid organic-inorganic and fully inorganic perovskites with different cations and halogens: FA0.9Cs0.1PbI2.8Br0.2, MAPbI3, FAPbBr3, CsPbBr3, and MAPb(Br0.05Cl0.95)3. The exciton g-factors are found to be nearly constant, ranging from +2.3 to +2.7. Thus, the strong dependences of the electron and hole g-factors on the bandgap roughly compensate each other when combining to the exciton g-factor. The same is true for the anisotropies of the carrier g-factors, resulting in a nearly isotropic exciton g-factor. The experimental data are compared favorably with model calculation results.

9.
Nature ; 626(7999): 542-548, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109940

RESUMEN

The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission.


Asunto(s)
Diseño de Fármacos , Ligandos , Nanopartículas del Metal , Puntos Cuánticos , Acetona/química , Alcoholes/química , Aniones , Compuestos de Calcio/química , Cationes , Coloides/química , Plomo , Mediciones Luminiscentes , Espectroscopía de Resonancia Magnética , Nanopartículas del Metal/química , Simulación de Dinámica Molecular , Óxidos/química , Fosfolípidos/química , Puntos Cuánticos/química , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier , Titanio/química
10.
ACS Nano ; 18(1): 1054-1062, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38109401

RESUMEN

The idea of phonon bottlenecks has long been pursued in nanoscale materials for their application in hot exciton devices, such as photovoltaics. Decades ago, it was shown that there is no quantum phonon bottleneck in strongly confined quantum dots due to their physics of quantum confinement. More recently, it was proposed that there are hot phonon bottlenecks in metal halide perovskites due to their physics. Recent work has called into question these bottlenecks in metal halide perovskites. Here, we compare hot exciton cooling in a range of sizes of CsPbBr3 nanocrystals from weakly to strongly confined. These results are compared to strongly confined CdSe quantum dots of two sizes and degrees of quantum confinement. CdSe is a model system as a ruler for measuring hot exciton cooling being fast, by virtue of its efficient Auger-assisted processes. By virtue of 3 ps time resolution, the hot exciton photoluminescence can now be directly observed, which is the most direct measure of the presence of hot excitons and their lifetimes. The hot exciton photoluminescence decays on nearly the same 2 ps time scale on both the weakly confined perovskite and the larger CdSe quantum dots, much faster than the 10 ps cooling predicted by transient absorption experiments. The smaller CdSe quantum dot has still faster cooling, as expected from quantum size effects. The quantum dots of perovskites show extremely fast hot exciton cooling, decaying faster than detection limits of <1 ps, even faster than the CdSe system, suggesting the efficiency of Auger processes in these metal halide perovskite nanocrystals and especially in their quantum dot form. These results across a range of sizes of nanocrystals reveal extremely fast hot exciton cooling at high exciton density, independent of composition, but dependent upon size. Hence these metal halide perovskite nanocrystals seem to cool heavily following quantum dot physics.

11.
Chem Mater ; 35(7): 2827-2834, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37063595

RESUMEN

Lead halide perovskite (LHP) nanocrystals (NCs) have gathered much attention as light-emitting materials, particularly owing to their excellent color purity, band gap tunability, high photoluminescence quantum yield (PLQY), low cost, and scalable synthesis. To enhance the stability of LHP NCs, bulky strongly bound organic ligands are commonly employed, which counteract the extraction of charge carriers from the NCs and hinder their use as photoconductive materials and photocatalysts. Replacing these ligands with a thin coating is a complex challenge due to the highly dynamic ionic lattice, which is vulnerable to the commonly employed coating precursors and solvents. In this work, we demonstrate thin (<1 nm) metal oxide gel coatings through non-hydrolytic sol-gel reactions. The coated NCs are readily dispersible and highly stable in short-chain alcohols while remaining monodisperse and exhibiting high PLQY (70-90%). We show the successful coating of NCs in a wide range of sizes (5-14 nm) and halide compositions. Alumina-gel-coated NCs were chosen for an in-depth analysis, and the versatility of the approach is demonstrated by employing zirconia- and titania-based coatings. Compact films of the alumina-gel-coated NCs exhibit electronic and excitonic coupling between the NCs, leading to two orders of magnitude longer photoluminescence lifetimes (400-700 ns) compared to NCs in solution or their organically capped counterparts. This makes these NCs highly suited for applications where charge carrier delocalization or extraction is essential for performance.

12.
Nano Lett ; 23(5): 1914-1923, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36852730

RESUMEN

The long search for nontoxic alternatives to lead halide perovskites (LHPs) has shown that some compelling properties of LHPs, such as low effective masses of carriers, can only be attained in their closest Sn(II) and Ge(II) analogues, despite their tendency toward oxidation. Judicious choice of chemistry allowed formamidinium tin iodide (FASnI3) to reach a power conversion efficiency of 14.81% in photovoltaic devices. This progress motivated us to develop a synthesis of colloidal FASnI3 NCs with a concentration of Sn(IV) reduced to an insignificant level and to probe their intrinsic structural and optical properties. Intrinsic FASnI3 NCs exhibit unusually low absorption coefficients of 4 × 103 cm-1 at the first excitonic transition, a 190 meV increase of the band gap as compared to the bulk material, and a lack of excitonic resonances. These features are attributed to a highly disordered lattice, distinct from the bulk FASnI3 as supported by structural characterizations and first-principles calculations.

13.
Adv Mater ; 35(9): e2208354, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36537857

RESUMEN

All-inorganic lead-halide perovskite (LHP) (CsPbX3 , X = Cl, Br, I) quantum dots (QDs) have emerged as a competitive platform for classical light-emitting devices (in the weak light-matter interaction regime, e.g., LEDs and laser), as well as for devices exploiting strong light-matter interaction at room temperature. Many-body interactions and quantum correlations among photogenerated exciton complexes play an essential role, for example, by determining the laser threshold, the overall brightness of LEDs, and the single-photon purity in quantum light sources. Here, by combining cryogenic single-QD photoluminescence spectroscopy with configuration-interaction (CI) calculations, the size-dependent trion and biexciton binding energies are addressed. Trion binding energies increase from 7 to 17 meV for QD sizes decreasing from 30 to 9 nm, while the biexciton binding energies increase from 15 to 30 meV, respectively. CI calculations quantitatively corroborate the experimental results and suggest that the effective dielectric constant for biexcitons slightly deviates from the one of the single excitons, potentially as a result of coupling to the lattice in the multiexciton regime. The findings here provide a deep insight into the multiexciton properties in all-inorganic LHP QDs, essential for classical and quantum optoelectronic devices.

14.
Science ; 377(6613): 1406-1412, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36074820

RESUMEN

Colloidal lead halide perovskite nanocrystals are of interest as photoluminescent quantum dots (QDs) whose properties depend on the size and shape. They are normally synthesized on subsecond time scales through hard-to-control ionic metathesis reactions. We report a room-temperature synthesis of monodisperse, isolable, spheroidal APbBr3 QDs ("A" indicates cesium, formamidinium, and methylammonium) that are size tunable from 3 to >13 nanometers. The kinetics of both nucleation and growth are temporally separated and substantially slowed down by the intricate equilibrium between the precursor (PbBr2) and the A[PbBr3] solute, with the latter serving as a monomer. QDs of all these compositions exhibit up to four excitonic transitions in their linear absorption spectra, and we demonstrate that the size-dependent confinement energy for all transitions is independent of the A-site cation.

15.
Nanoscale Adv ; 4(17): 3566-3572, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36134347

RESUMEN

We demonstrate that the photoconductance of colloidal PbS/MAPbI3 quantum dots in nanoscale gold electrode gaps shows a consistent power law dependence of the photocurrent on the light intensity with an exponent slightly below 0.7. The gap sizes are between 25 and 800 nm and by scanning photocurrent microscopy we evidence the strong localization and high reproducibility of photocurrent generation. We probe different flat-faced and pointed electrodes for excitation light in the red and near infrared spectral range and laser irradiances from 10-2 to 102 W cm-2. Our material combination provides practically identical photocurrent response for a wide range of gap sizes and geometries, highlighting its generic potential for nanoscale light coupling and detection.

16.
Nano Lett ; 22(11): 4340-4346, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35605286

RESUMEN

The soft lattice of lead-halide perovskite nanocrystals (NCs) allows tuning their optoelectronic characteristics via anion exchange by introducing halide salts to a solution of perovskite NCs. Similarly, cross-anion exchange can occur upon mixing NCs of different perovskite halides. This process, though, is detrimental for applications requiring perovskite NCs with different halides in close proximity. We study the effects of various stabilizing surface ligands on the kinetics of the cross-anion exchange reaction, comparing zwitterionic and ionic ligands. The kinetic analysis, inspired by the "cage effect" for solution reactions, showcases a mechanism where the surface capping ligands act as anion carriers that diffuse to the NC surface, forming an encounter pair enclosed by the surrounding ligands that initiates the anion exchange process. The zwitterionic ligands considerably slow down the cross-anion exchange process, and while they do not fully inhibit it, they confer improved stability alongside enhanced solubility relevant for various applications.

17.
Nano Lett ; 22(3): 1067-1074, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35044784

RESUMEN

Describing the nanoscale charge carrier transport at surfaces and interfaces is fundamental for designing high-performance optoelectronic devices. To achieve this, we employ time- and angle-resolved photoelectron spectroscopy with ultraviolet pump and extreme ultraviolet probe pulses. The resulting high surface sensitivity reveals an ultrafast carrier population decay associated with surface-to-bulk transport, which was tracked with a sub-nanometer spatial resolution normal to the surface, and on a femtosecond time scale, in the case of the inorganic CsPbBr3 lead halide perovskite. The decay time exhibits a pronounced carrier density dependence, which is attributed via modeling to enhanced diffusive transport and concurrent recombination. The transport is found to approach an ordinary diffusive regime, limited by electron-hole scattering, at the highest excitation fluences. This approach constitutes an important milestone in our capability to probe hot-carrier transport at solid interfaces with sub-nanometer resolution in a theoretically and experimentally challenging, yet technologically relevant, high-carrier-density regime.

18.
Adv Mater ; 34(1): e2105263, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34606138

RESUMEN

The outstanding optical quality of lead halide perovskites inspires studies of their potential for the optical control of carrier spins as pursued in other materials. Entering largely uncharted territory, time-resolved pump-probe Kerr rotation is used to explore the coherent spin dynamics of electrons and holes in bulk formamidinium caesium lead iodine bromide (FA0.9 Cs0.1 PbI2.8 Br0.2 ) and to determine key parameters characterizing interactions of their spins, such as the g-factors and relaxation times. The demonstrated long spin dynamics and narrow g-factor distribution prove the perovskites as promising competitors for conventional semiconductors in spintronics. The dynamic nuclear polarization via spin-oriented holes is realized and the identification of the lead (207 Pb) isotope in optically detected nuclear magnetic resonance proves that the hole-nuclei interaction is dominated by the lead ions. A detailed theoretical analysis accounting for the specifics of the lead halide perovskite materials allows the evaluation of the underlying hyperfine interaction constants, both for electrons and holes. Recombination and spin dynamics evidence that at low temperatures, photogenerated electrons and holes are localized at different regions of the perovskite crystal, resulting in their long lifetimes up to 44 µs. The findings form the base for the tailored development of spin-optoelectronic applications for the large family of lead halide perovskites and their nanostructures.

19.
ACS Energy Lett ; 6(2): 581-587, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33614964

RESUMEN

Cesium lead halides have intrinsically unstable crystal lattices and easily transform within perovskite and nonperovskite structures. In this work, we explore the conversion of the perovskite CsPbBr3 into Cs4PbBr6 in the presence of PbS at 450 °C to produce doped nanocrystal-based composites with embedded Cs4PbBr6 nanoprecipitates. We show that PbBr2 is extracted from CsPbBr3 and diffuses into the PbS lattice with a consequent increase in the concentration of free charge carriers. This new doping strategy enables the adjustment of the density of charge carriers between 1019 and 1020 cm-3, and it may serve as a general strategy for doping other nanocrystal-based semiconductors.

20.
ACS Appl Mater Interfaces ; 13(4): 5195-5207, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33470785

RESUMEN

The recent development of phase transfer ligand exchange methods for PbS quantum dots (QD) has enhanced the performance of quantum dots solar cells and greatly simplified the complexity of film deposition. However, the dispersions of PbS QDs (inks) used for film fabrication often suffer from colloidal instability, which hinders large-scale solar cell production. In addition, the wasteful spin-coating method is still the main technique for the deposition of QD layer in solar cells. Here, we report a strategy for scalable solar cell fabrication from highly stable PbS QD inks. By dispersing PbS QDs capped with CH3NH3PbI3 in 2,6-difluoropyridine (DFP), we obtained inks that are colloidally stable for more than 3 months. Furthermore, we demonstrated that DFP yields stable dispersions even of large diameter PbS QDs, which are of great practical relevance owing to the extended coverage of the near-infrared region. The optimization of blade-coating deposition of DFP-based inks enabled the fabrication of PbS QD solar cells with power conversion efficiencies of up to 8.7%. It is important to underline that this performance is commensurate with the devices made by spin coating of inks with the same ligands. A good shelf life-time of these inks manifests itself in the comparatively high photovoltaic efficiency of 5.8% obtained with inks stored for more than 120 days.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...