Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Magn Reson Med ; 91(6): 2621-2637, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38234037

RESUMEN

PURPOSE: To present an open-source MR simulation framework that facilitates the incorporation of complex motion and flow for studying cardiovascular MR (CMR) acquisition and reconstruction. METHODS: CMRsim is a Python package that allows simulation of CMR images using dynamic digital phantoms with complex motion as input. Two simulation paradigms are available, namely, numerical and analytical solutions to the Bloch equations, using a common motion representation. Competitive simulation speeds are achieved using TensorFlow for GPU acceleration. To demonstrate the capability of the package, one introductory and two advanced CMR simulation experiments are presented. The latter showcase phase-contrast imaging of turbulent flow downstream of a stenotic section and cardiac diffusion tensor imaging on a contracting left ventricle. Additionally, extensive documentation and example resources are provided. RESULTS: The Bloch simulation with turbulent flow using approximately 1.5 million particles and a sequence duration of 710 ms for each of the seven different velocity encodings took a total of 29 min on a NVIDIA Titan RTX GPU. The results show characteristic phase contrast and magnitude modulation present in real data. The analytical simulation of cardiac diffusion tensor imaging with bulk-motion phase sensitivity took approximately 10 s per diffusion-weighted image, including preparation and loading steps. The results exhibit the expected alteration of diffusion metrics due to strain. CONCLUSION: CMRsim is the first simulation framework that allows one to feasibly incorporate complex motion, including turbulent flow, to systematically study advanced CMR acquisition and reconstruction approaches. The open-source package features modularity and transparency, facilitating maintainability and extensibility in support of reproducible research.


Asunto(s)
Imagen de Difusión Tensora , Corazón , Corazón/diagnóstico por imagen , Simulación por Computador , Movimiento (Física) , Fantasmas de Imagen
2.
Sci Rep ; 12(1): 16004, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163357

RESUMEN

We propose to synthesize patient-specific 4D flow MRI datasets of turbulent flow paired with ground truth flow data to support training of inference methods. Turbulent blood flow is computed based on the Navier-Stokes equations with moving domains using realistic boundary conditions for aortic shapes, wall displacements and inlet velocities obtained from patient data. From the simulated flow, synthetic multipoint 4D flow MRI data is generated with user-defined spatiotemporal resolutions and reconstructed with a Bayesian approach to compute time-varying velocity and turbulence maps. For MRI data synthesis, a fixed hypothetical scan time budget is assumed and accordingly, changes to spatial resolution and time averaging result in corresponding scaling of signal-to-noise ratios (SNR). In this work, we focused on aortic stenotic flow and quantification of turbulent kinetic energy (TKE). Our results show that for spatial resolutions of 1.5 and 2.5 mm and time averaging of 5 ms as encountered in 4D flow MRI in practice, peak total turbulent kinetic energy downstream of a 50, 75 and 90% stenosis is overestimated by as much as 23, 15 and 14% (1.5 mm) and 38, 24 and 23% (2.5 mm), demonstrating the importance of paired ground truth and 4D flow MRI data for assessing accuracy and precision of turbulent flow inference using 4D flow MRI exams.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Teorema de Bayes , Velocidad del Flujo Sanguíneo/fisiología , Constricción Patológica , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos
3.
Nat Commun ; 11(1): 6356, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33353938

RESUMEN

Minimally invasive medical procedures, such as endovascular catheterization, have considerably reduced procedure time and associated complications. However, many regions inside the body, such as in the brain vasculature, still remain inaccessible due to the lack of appropriate guidance technologies. Here, experimentally and through numerical simulations, we show that tethered ultra-flexible endovascular microscopic probes can be transported through tortuous vascular networks with minimal external intervention by harnessing hydrokinetic energy. Dynamic steering at bifurcations is performed by deformation of the probe head using magnetic actuation. We developed an endovascular microrobotic toolkit with a cross-sectional area that is orders of magnitude smaller than the smallest catheter currently available. Our technology has the potential to improve state-of-the-art practices as it enhances the reachability, reduces the risk of iatrogenic damage, significantly increases the speed of robot-assisted interventions, and enables the deployment of multiple leads simultaneously through a standard needle injection and saline perfusion.


Asunto(s)
Procedimientos Endovasculares/instrumentación , Reología , Robótica , Animales , Catéteres , Simulación por Computador , Oído/irrigación sanguínea , Oído/cirugía , Diseño de Equipo , Humanos , Fenómenos Magnéticos , Microfluídica , Fantasmas de Imagen , Conejos , Temperatura , Investigación Biomédica Traslacional
4.
Adv Sci (Weinh) ; 7(20): 2001120, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33101852

RESUMEN

A design, manufacturing, and control methodology is presented for the transduction of ultrasound into frequency-selective actuation of multibody hydrogel mechanical systems. The modular design of compliant mechanisms is compatible with direct laser writing and the multiple degrees of freedom actuation scheme does not require incorporation of any specific material such as air bubbles. These features pave the way for the development of active scaffolds and soft robotic microsystems from biomaterials with tailored performance and functionality. Finite element analysis and computational fluid dynamics are used to quantitatively predict the performance of acoustically powered hydrogels immersed in fluid and guide the design process. The outcome is the remotely controlled operation of a repertoire of untethered biomanipulation tools including monolithic compound micromachinery with multiple pumps connected to various functional devices. The potential of the presented technology for minimally invasive diagnosis and targeted therapy is demonstrated by a soft microrobot that can on-demand collect, encapsulate, and process microscopic samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...