Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Med Image Anal ; 97: 103230, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38875741

RESUMEN

Challenges drive the state-of-the-art of automated medical image analysis. The quantity of public training data that they provide can limit the performance of their solutions. Public access to the training methodology for these solutions remains absent. This study implements the Type Three (T3) challenge format, which allows for training solutions on private data and guarantees reusable training methodologies. With T3, challenge organizers train a codebase provided by the participants on sequestered training data. T3 was implemented in the STOIC2021 challenge, with the goal of predicting from a computed tomography (CT) scan whether subjects had a severe COVID-19 infection, defined as intubation or death within one month. STOIC2021 consisted of a Qualification phase, where participants developed challenge solutions using 2000 publicly available CT scans, and a Final phase, where participants submitted their training methodologies with which solutions were trained on CT scans of 9724 subjects. The organizers successfully trained six of the eight Final phase submissions. The submitted codebases for training and running inference were released publicly. The winning solution obtained an area under the receiver operating characteristic curve for discerning between severe and non-severe COVID-19 of 0.815. The Final phase solutions of all finalists improved upon their Qualification phase solutions.

2.
Cancers (Basel) ; 15(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37627111

RESUMEN

BACKGROUND: Antibodies that inhibit the programmed cell death protein 1 (PD-1) receptor offer a significant survival benefit, potentially cure (i.e., durable disease-free survival following treatment discontinuation), a substantial proportion of patients with advanced melanoma. Most patients however fail to respond to such treatment or acquire resistance. Previously, we reported that baseline total metabolic tumour volume (TMTV) determined by whole-body [18F]FDG PET/CT was independently correlated with survival and able to predict the futility of treatment. Manual delineation of [18F]FDG-avid lesions is however labour intensive and not suitable for routine use. A predictive survival model is proposed based on automated analysis of baseline, whole-body [18F]FDG images. METHODS: Lesions were segmented on [18F]FDG PET/CT using a deep-learning approach and derived features were investigated through Kaplan-Meier survival estimates with univariate logrank test and Cox regression analyses. Selected parameters were evaluated in multivariate Cox survival regressors. RESULTS: In the development set of 69 patients, overall survival prediction based on TMTV, lactate dehydrogenase levels and presence of brain metastases achieved an area under the curve of 0.78 at one year, 0.70 at two years. No statistically significant difference was observed with respect to using manually segmented lesions. Internal validation on 31 patients yielded scores of 0.76 for one year and 0.74 for two years. CONCLUSIONS: Automatically extracted TMTV based on whole-body [18F]FDG PET/CT can aid in building predictive models that can support therapeutic decisions in patients treated with immune-checkpoint blockade.

3.
Comput Methods Programs Biomed ; 221: 106902, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35636357

RESUMEN

BACKGROUND AND OBJECTIVE: In oncology, 18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) / computed tomography (CT) is widely used to identify and analyse metabolically-active tumours. The combination of the high sensitivity and specificity from 18F-FDG PET and the high resolution from CT makes accurate assessment of disease status and treatment response possible. Since cancer is a systemic disease, whole-body imaging is of high interest. Moreover, whole-body metabolic tumour burden is emerging as a promising new biomarker predicting outcome for innovative immunotherapy in different tumour types. However, this comes with certain challenges such as the large amount of data for manual reading, different appearance of lesions across the body and cumbersome reporting, hampering its use in clinical routine. Automation of the reading can facilitate the process, maximise the information retrieved from the images and support clinicians in making treatment decisions. METHODS: This work proposes a fully automated system for lesion detection and segmentation on whole-body 18F-FDG PET/CT. The novelty of the method stems from the fact that the same two-step approach used when manually reading the images was adopted, consisting of an intensity-based thresholding on PET followed by a classification that specifies which regions represent normal physiological uptake and which are malignant tissue. The dataset contained 69 patients treated for malignant melanoma. Baseline and follow-up scans together offered 267 images for training and testing. RESULTS: On an unseen dataset of 53 PET/CT images, a median F1-score of 0.7500 was achieved with, on average, 1.566 false positive lesions per scan. Metabolically-active tumours were segmented with a median dice score of 0.8493 and absolute volume difference of 0.2986 ml. CONCLUSIONS: The proposed fully automated method for the segmentation and detection of metabolically-active lesions on whole-body 18F-FDG PET/CT achieved competitive results. Moreover, it was compared to a direct segmentation approach which it outperformed for all metrics.


Asunto(s)
Aprendizaje Profundo , Melanoma , Computadores , Fluorodesoxiglucosa F18 , Humanos , Melanoma/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Neoplasias Cutáneas , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...