RESUMEN
Benign prostatic hyperplasia (BPH) is a prevalent condition affecting the male urinary system, with its molecular mechanisms of pathogenesis remaining unclear. Y-27632, a non-isoform-selective Rho kinase inhibitor, has shown therapeutic potential in various diseases but its effects on static factors and fibrosis in BPH remain unexplored. This study investigated human prostate tissues, human prostate cell lines, and BPH rat model using immunofluorescence, flow cytometry, quantitative reverse transcription polymerase chain reaction, western blotting, and cell counting kit-8. ROCK1 and ROCK2 were significantly up-regulated in BPH tissues, correlating with clinical parameters. Y-27632 targeted the inhibition of ROCK1 & ROCK2 expression and inhibited cell proliferation, fibrosis, epithelial-mesenchymal transition (EMT), while induced cell apoptosis in a dose-dependent manner. Moreover, knockdown of either ROCK isoform inhibited fibrosis and EMT, induced apoptosis, while ROCK overexpression had the opposite effects. ROCK downregulation inhibited the ß-catenin signaling pathway (such as C-MYC, Snail and Survivin) and decreased ß-catenin protein stability, while inhibiting TGF-ß/Smad2/3 signaling. At the in vivo level, Y-27632 reversed prostatic hyperplasia and fibrosis in BPH model rats to some extent. Our study sheds light on the therapeutic potential of Y-27632 in regulating prostate cell growth, fibrosis and EMT, and demonstrates for the first time the regulatory effect of ROCK isoforms on prostate cells, providing the basis for future research of ROCK isoform-selective inhibitors.
Asunto(s)
Amidas , Proliferación Celular , Transición Epitelial-Mesenquimal , Fibrosis , Hiperplasia Prostática , Piridinas , beta Catenina , Quinasas Asociadas a rho , Masculino , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Transición Epitelial-Mesenquimal/efectos de los fármacos , Piridinas/farmacología , Animales , Hiperplasia Prostática/patología , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/genética , Humanos , Proliferación Celular/efectos de los fármacos , Ratas , Fibrosis/metabolismo , Fibrosis/patología , beta Catenina/metabolismo , beta Catenina/genética , Amidas/farmacología , Apoptosis/efectos de los fármacos , Próstata/patología , Próstata/efectos de los fármacos , Próstata/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Línea Celular , Persona de Mediana EdadRESUMEN
INTRODUCTION: Benign prostatic hyperplasia (BPH) is a common pathologic process in aging men, and the contraction of the prostatic smooth muscles (SMs) in the stroma plays a vital role in this pathogenesis, leading to lower urinary tract symptoms (LUTSs). The isoforms of both the SM myosin (SMM) and non-muscle myosin (NMM) are associated with the contraction type of the prostatic SMs, but the mechanism has not been fully elucidated. METHODS: We collected prostate tissues from 30 BPH patients receiving surgical treatments, and normal human prostate samples were obtained from 12 brain-dead men. A testosterone-induced (T-induced) rat model was built, and the epithelial hyperplastic prostates were harvested. Competitive RT-PCR was used to detect the expression of SMM isoforms. We investigated the contractility of human prostate strips in vitro in an organ bath. RESULTS: The results regarding the comparisons of SMM isoforms varied between rat models and human samples. In comparison with T-induced rats and controls, competitive RT-PCR failed to show any statistically significant difference regarding the compositions of SMM isoforms. For human prostates samples, BPH patients expressed more SM-1 isoforms (66.8% vs. 60.0%, p < 0.001) and myosin light chain-17b (MLC17b) (35.9% vs. 28.5%, p < 0.05) when compared to young donors. There was a significant decrease in prostate myosin heavy chain (MHC) expression in BPH patients, with a 66.4% decrease in MHC at the mRNA level and a 51.2% decrease at the protein level. The upregulated expression of non-muscle myosin heavy chain-B (NMMHC-B) was 1.6-fold at the mRNA level and 2.1-fold at the protein level. The organ bath study showed that isolated prostate strips from BPH patients produced slower tonic contraction compared to normal humans. CONCLUSION: In this study, we claim that in the enlarged prostates of patients undergoing surgeries, MHC expression significantly decreased compared to normal tissues, with elevated levels of SM-1, MLC17b, and NMMHC-B isoforms. Modifications in SMM and NMM might play a role in the tonic contractile properties of prostatic SMs and the development of LUTS/BPH. Understanding this mechanism might provide insights into the origins of LUTS/BPH and facilitate the identification of novel therapeutic targets.
RESUMEN
IMPORTANCE: Sphingosine-1-phosphate (S1P) is a signaling molecule involved in inflammation and bladder contraction. OBJECTIVES: The aims of this case-control pilot study were to compare urinary S1P concentrations in bladder pain syndrome (BPS) participants to controls and determine whether these concentrations correlate with disease severity and duration. STUDY DESIGN: Adult females with BPS and controls were enrolled. Bladder pain syndrome participants completed an O'Leary-Sant questionnaire. Information on duration of symptoms and treatment history was obtained. Urinary S1P and creatinine concentrations were determined. Mann-Whitney U tests were used to compare groups, and Spearman correlation was used to test for associations between concentrations and duration and severity of symptoms. RESULTS: Twenty-five participants were in each group. Median S1P concentration was 1,225 ng/dL in the BPS group and 2,183 ng/dL in the control group, which was significantly different (P < 0.0001). This difference did not persist when normalized to urinary creatinine (P = 0.58). No differences were noted in urinary S1P concentrations between treated and untreated participants (P = 0.53) or with symptom scores of 13 or greater and less than 13 (P = 0.69). Sphingosine-1-phosphate levels did not correlate with O'Leary-Sant scores (P = 0.08) or duration of symptoms (P = 0.67). Results did not change when using S1P concentrations normalized to creatinine. CONCLUSIONS: This study demonstrated successful quantification of human urinary S1P concentrations. A difference in urinary S1P was found between BPS participants and controls but not when normalized to creatinine. While this is the first study to investigate urinary S1P as a biomarker for BPS, results suggest that it may have a potential role as a biomarker requiring further research.
Asunto(s)
Cistitis Intersticial , Lisofosfolípidos , Esfingosina/análogos & derivados , Adulto , Femenino , Humanos , Cistitis Intersticial/diagnóstico , Proyectos Piloto , Creatinina , Biomarcadores/orinaRESUMEN
Benign prostatic hyperplasia (BPH) is one of the most common diseases in elderly men worldwide that may result in lower urinary tract symptoms (LUTS). At present, the specific pathophysiological mechanism for BPH/LUTS LUTS remains unclear. S100 calcium binding protein A4 (S100A4), a member of the calcium binding protein family, regulates a variety of biological processes including cell proliferation, apoptosis and fibrosis. The aim of the current study was to explore and clarify the possible role of S100A4 in BPH/LUTS. The human prostate stromal cell line (WPMY-1), rat prostate epithelial cells, human prostate tissues and two BPH rat models were employed in this study. The expression and localization of S100A4 were detected by quantitative real time PCR (qRT-PCR), immunofluorescence microscopy, Western blotting and immunohistochemistry analysis. Also, S100A4 knockdown or overexpression cell models were constructed and a BPH rat model was induced with testosterone propionate (T) or phenylephrine (PE). The BPH animals were treated with Niclosamide, a S100A4 transcription inhibitor. Results demonstrated that S100A4 was mainly localized in human prostatic stroma and rat prostatic epithelium, and showed a higher expression in BPH. Knockdown of S100A4 induced cell apoptosis, cell proliferation arrest and a reduction of tissue fibrosis markers. Overexpression of S100A4 reversed the aforementioned changes. We also demonstrated that S100A4 regulated proliferation and apoptosis mainly through the ERK pathway and modulated fibrosis via Wnt/ß-catenin signaling. In conclusion, our novel data demonstrate that S100A4 could play a crucial role in BPH development and may be explored as a new therapeutic target of BPH.
Asunto(s)
Próstata , Hiperplasia Prostática , Proteína de Unión al Calcio S100A4 , Anciano , Animales , Humanos , Masculino , Ratas , Apoptosis , Proliferación Celular , Fibrosis , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Proteína de Unión al Calcio S100A4/genética , Proteína de Unión al Calcio S100A4/metabolismoRESUMEN
Benign prostatic hyperplasia (BPH) is a quite common chronic disease plagued elderly men and its etiology remains unclear. It was reported that the six-transmembrane epithelial antigen of prostate 4 (STEAP4) could modulate cell proliferation/apoptosis ratio and oxidative stress in cancers. Our current study aimed to explore the expression, biological function, and underlying mechanism of STEAP4 in BPH progress. Human prostate tissues and cell lines were utilized. qRT-PCR and immunofluorescence staining were employed. STEAP4 knockdown (STEAP4-KD) or STEAP4 overexpression (STEAP4-OE) cell models were established. Cell proliferation, cell cycle, apoptosis, and reactive oxygen species (ROS) were determined by cell counting kit-8 (CCK-8) assay and flow cytometry. Apoptosis-related proteins and antioxidant enzymes were identified by Western Blot. In addition, the epithelial-mesenchymal transition (EMT) process and fibrosis biomarker (collagen I and α-SMA) were analyzed. It was indicated that STEAP4 was mainly located in the prostate epithelium and upregulated in BPH tissues. STEAP4 deficiency induced apoptosis and inhibited cell survival, but had no effect on the cell cycle, fibrosis, and EMT process. In addition, ROS changes were observed in the STEAP4-KD model. Consistently, overproduction of STEAP4 suppressed apoptosis and promoted cell proliferation, as well as facilitated ROS production. We further examined AKT / mTOR, p38MAPK / p-p38MAPK, and WNT/ ß-Catenin signaling pathway and demonstrated that STEAP4 regulated the proliferation and apoptosis of prostate cells through AKT / mTOR signaling, rather than p38MAPK / p-p38MAPK and WNT/ ß-Catenin pathways. Furthermore, activating AKT / mTOR signaling with SC79 significantly reversed apoptosis triggered by STEAP4 deficiency, whereas suppressing AKT / mTOR signaling with MK2206 reduced the increase of cell viability triggered by STEAP4 overproduction. Our original data demonstrated that STEAP4 is crucial in the onset and progression of prostate hyperplasia and may become a new target for the treatment of BPH.
Asunto(s)
Hiperplasia Prostática , Masculino , Humanos , Anciano , Hiperplasia Prostática/metabolismo , beta Catenina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular , Apoptosis , Estrés Oxidativo , Fibrosis , Proteínas de la Membrana/metabolismo , OxidorreductasasRESUMEN
BACKGROUND: The pathogenesis of benign prostatic hyperplasia (BPH) has not been fully elucidated. Ras homology family member A (RhoA) plays an important role in regulating cell cytoskeleton, growth and fibrosis. The role of RhoA in BPH remains unclear. METHODS: This study aimed to clarify the expression, functional activity and mechanism of RhoA in BPH. Human prostate tissues, human prostate cell lines, BPH rat model were used. Cell models of RhoA knockdown and overexpression were generated. Immunofluorescence staining, quantitative real time PCR (qRT-PCR), Western blotting, cell counting kit-8 (CCK-8), flow cytometry, phalloidine staining, organ bath study, gel contraction assay, protein stability analysis, isolation and extraction of nuclear protein and cytoplasmic protein were performed. RESULTS: In this study we found that RhoA was localized in prostate stroma and epithelial compartments and was up-regulated in both BPH patients and BPH rats. Functionally, RhoA knockdown induced cell apoptosis and inhibited cell proliferation, fibrosis, epithelial-mesenchymal transformation (EMT) and contraction. Consistently, overexpression of RhoA reversed all aforementioned processes. More importantly, we found that ß-catenin and the downstream of Wnt/ß-catenin signaling, including C-MYC, Survivin and Snail were up-regulated in BPH rats. Downregulation of RhoA significantly reduced the expression of these proteins. Rho kinase inhibitor Y-27632 also down-regulated ß-catenin protein in a concentration-dependent manner. However, overexpression of ß-catenin did not affect RhoA-ROCK levels, suggesting that ß-catenin was the downstream of RhoA-ROCK regulation. Further data suggested that RhoA increased nuclear translocation of ß-catenin and up-regulated ß-catenin expression by inhibiting its proteasomal degradation, thereby activating Wnt/ß-catenin signaling. Overexpression of ß-catenin partially reversed the changes in cell growth, fibrosis and EMT except cell contraction caused by RhoA downregulation. Finally, Y-27632 partially reversed prostatic hyperplasia in vivo, further suggesting the potential of RhoA-ROCK signaling in BPH treatment. CONCLUSION: Our novel data demonstrated that RhoA regulated both static and dynamic factors of BPH, RhoA-ROCK-ß-catenin signaling axis played an important role in the development of BPH and might provide more possibilities for the formulation of subsequent clinical treatment strategies.
Asunto(s)
Hiperplasia Prostática , Animales , Humanos , Masculino , Ratas , beta Catenina/metabolismo , Proliferación Celular , Fibrosis , Hiperplasia Prostática/genética , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patología , Vía de Señalización WntRESUMEN
BACKGROUND: Benign prostatic hyperplasia (BPH) is a common disease in elderly men, mainly resulted from an imbalance between cell proliferation and death. Glutathione peroxidase 3 (GPX3) was one of the differentially expressed genes in BPH identified by transcriptome sequencing of 5 hyperplastic and 3 normal prostate specimens, which had not been elucidated in the prostate. This study aimed to ascertain the mechanism of GPX3 involved in cell proliferation, apoptosis, autophagy and ferroptosis in BPH. METHODS: Human prostate tissues, GPX3 silencing and overexpression prostate cell (BPH-1 and WPMY-1) models and testosterone-induced rat BPH (T-BPH) model were utilized. The qRT-PCR, CCK8 assay, flow cytometry, Western blotting, immunofluorescence, hematoxylin and eosin, masson's trichrome, immunohistochemical staining and transmission electron microscopy analysis were performed during in vivo and in vitro experiments. RESULTS: Our study indicated that GPX3 was localized both in the stroma and epithelium of prostate, and down-regulated in BPH samples. Overexpression of GPX3 inhibited AMPK and activated ERK1/2 pathway, thereby inducing mitochondria-dependent apoptosis and G0/G1 phase arrest, which could be significantly reversed by MEK1/2 inhibitor U0126 preconditioning. Moreover, overexpression of GPX3 further exerted anti-autophagy by inhibiting AMPK/m-TOR and up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4, mitochondrial GPX4 and cytoplasmic GPX4) to antagonize autophagy-related ferroptosis. Consistently, GPX3 deficiency generated opposite changes in both cell lines. Finally, T-BPH rat model was treated with GPX3 indirect agonist troglitazone (TRO) or GPX4 inhibitor RAS-selective lethal 3 (RSL3) or TRO plus RSL3. These treatments produced significant atrophy of the prostate and related molecular changes were similar to our in vitro observations. CONCLUSIONS: Our novel data manifested that GPX3, which was capable of inducing apoptosis via AMPK/ERK1/2 pathway and antagonizing autophagy-related ferroptosis through AMPK/m-TOR signalling, was a promising therapeutic target for BPH in the future.
Asunto(s)
Ferroptosis , Hiperplasia Prostática , Anciano , Animales , Humanos , Masculino , Ratas , Proteínas Quinasas Activadas por AMP , Apoptosis , Glutatión Peroxidasa , Hiperplasia , Sistema de Señalización de MAP Quinasas , Mitocondrias , Próstata , Serina-Treonina Quinasas TORRESUMEN
Benign prostatic hyperplasia (BPH) is a common disease in elderly men with an uncertain etiology and mechanistic basis. Metabolic syndrome (MetS) is also a very common illness and is closely related to BPH. Simvastatin (SV) is one of the widely used statins for MetS. Peroxisome-proliferator-activated receptor gamma (PPARγ), crosstalking with the WNT/ß-catenin pathway, plays important roles in MetS. Our current study aimed to examine SV-PPARγ-WNT/ß-catenin signaling in the development of BPH. Human prostate tissues and cell lines plus a BPH rat model were utilized. Immunohistochemical, immunofluorescence, hematoxylin and eosin (H&E) and Masson's trichrome staining, construction of a tissue microarray (TMA), ELISA, CCK-8 assay, qRT-PCR, flow cytometry, and Western blotting were also performed. PPARγ was expressed in both prostate stroma and epithelial compartments and downregulated in BPH tissues. Furthermore, SV dose-dependently triggered cell apoptosis and cell cycle arrest at the G0/G1 phase and attenuated tissue fibrosis and the epithelial-mesenchymal transition (EMT) process both in vitro and in vivo. SV also upregulated the PPARγ pathway, whose antagonist could reverse SV produced in the aforementioned biological process. Additionally, crosstalk between PPARγ and WNT/ß-catenin signaling was demonstrated. Finally, correlation analysis with our TMA containing 104 BPH specimens showed that PPARγ was negatively related with prostate volume (PV) and free prostate-specific antigen (fPSA) and positively correlated with maximum urinary flow rate (Qmax). WNT-1 and ß-catenin were positively related with International Prostate Symptom Score (IPSS) and nocturia, respectively. Our novel data demonstrate that SV could modulate cell proliferation, apoptosis, tissue fibrosis, and the EMT process in the prostate through crosstalk between PPARγ and WNT/ß-catenin pathways.
Asunto(s)
Hiperplasia Prostática , Masculino , Humanos , Ratas , Animales , Anciano , PPAR gamma/metabolismo , beta Catenina/metabolismo , Simvastatina , Peroxisomas/metabolismo , Vía de Señalización Wnt , Proliferación Celular , FibrosisRESUMEN
Prostate volume (PV) differs dramatically among benign prostatic hyperplasia (BPH) patients. Estimation of PV is important to guide the most appropriate pharmacologic or interventional treatment approach. However, the underlying pathophysiological mechanisms for the differences in PV remain unknown. We recently found that the myosin II system might participate in the etiology and development of BPH via static and dynamic factors. Our present study aims to explore the expression and functional activities of myosin II isoforms including smooth muscle (SM) myosin II (SMM II) and non-muscle myosin II (NMM II) in hyperplastic prostates with varied PV. Human hyperplastic prostates and the testosterone-induced rat BPH model were employed for this study. Hematoxylin and Eosin (H&E), Masson's trichrome, immunohistochemical staining, in vitro organ bath, RT-polymerase chain reaction (PCR) and Western-blotting were performed. Also, a BPH tissue microarray (TMA) was constructed to determine the correlations between myosin II isoforms with clinical parameters of BPH patients. With the increase of PV, the expression of NMMHC-A, NMMHC-C, SM-A and LC17b isoforms were increased, and the contractility of prostate smooth muscle was enhanced but force developed more slowly. Consistently, NMMHC-A, NMMHC-C, SM-A and LC17b were correlated positively with PV. Similar outcomes were also observed in the BPH rat model with different PVs. Alterations in the expression and function of myosin the II system may be involved in the pathophysiological mechanism of PV differences between BPH patients.
Asunto(s)
Próstata , Hiperplasia Prostática , Masculino , Humanos , Ratas , Animales , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Contracción Muscular , Miosina Tipo II/metabolismo , Isoformas de Proteínas/metabolismoRESUMEN
Benign prostatic hyperplasia (BPH) is a common disease in elderly men. It is characterized by prostatic enlargement and urethral compression and often causes lower urinary tract symptoms (LUTs) such as urinary frequency, urgency, and nocturia. Existing studies have shown that the pathological process of prostate hyperplasia is mainly related to the imbalance of cell proliferation and apoptosis, inflammation, epithelial-mesenchymal transition (EMT), and growth factors. However, the exact molecular mechanisms remain incompletely elucidated. Cell adhesion molecules (CAMs) are a group of cell surface proteins that mediate cell-cell adhesion and cell migration. Modulating adhesion molecule expression can regulate cell proliferation, apoptosis, EMT, and fibrotic processes, engaged in the development of prostatic hyperplasia. In this review, we went over the important roles and molecular mechanisms of cell adhesion molecules (mainly integrins and cadherins) in both physiological and pathological processes. We also analyzed the mechanisms of CAMs in prostate hyperplasia and explored the potential value of targeting CAMs as a therapeutic strategy for BPH.
Asunto(s)
Hiperplasia Prostática , Masculino , Humanos , Anciano , Hiperplasia Prostática/patología , Hiperplasia , Inflamación , Presión , CadherinasRESUMEN
Bladder cancer (BCa) is a common malignancy with uncertain molecular mechanism. 7-dehydrocholesterol reductase (DHCR7), the enzyme of mammalian sterol biosynthesis, plays important roles in several types of cancers but its specific function in BCa is still unknown. The current study aimed to determine the bioinformatic characteristics and biological functions of DHCR7 in BCa. Sequencing results and clinical data from online public databases, human BCa tissues and matched noncancerous tissues, xenograft nude mice, DHCR7 deficiency and overexpression BCa cell (T24 and EJ) models were used. Several bioinformatics analyses were made, qRT-PCR, Western-blotting, flow cytometry, immunohistochemistry (IHC), MTT assay, wound healing and cell invasion assays were performed. It was found that DHCR7 was upregulated in BCa as an independent risk factor, and the expression of DHCR7 was associated with BCa grade and stage, finally resulted in poor prognosis. We further demonstrated that DHCR7 overexpression could accelerate the G0/G1 phase to accelerate the growth of tumor cells, antagonize cell apoptosis, and enhance the invasion and migration capacity, as well as EMT process via PI3K/AKT/mTOR signalling pathway, which could be completely reversed by DHCR7 knockdown. Finally, DHCR7 deficiency significantly decreased tumorigenesis in vivo. Our novel data demonstrated that DHCR7 could modulate BCa tumorigenesis in vitro and in vivo via PI3K/AKT/mTOR signalling pathway. It is suggested that DHCR7 might become a molecular target for the diagnosis and treatment of BCa.
Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Neoplasias de la Vejiga Urinaria , Animales , Ratones , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Oxidorreductasas , Ratones Desnudos , Línea Celular Tumoral , Proliferación Celular , Serina-Treonina Quinasas TOR/metabolismo , Transformación Celular Neoplásica/metabolismo , Carcinogénesis , Neoplasias de la Vejiga Urinaria/patología , Movimiento Celular , Mamíferos/metabolismoRESUMEN
Prostate cancer (PCa) is the second most frequent cancer that affects aging men worldwide. However, its exact pathogenesis has not been fully elucidated. The heat shock protein (HSP) family has cell-protective properties that may promote tumor growth and protect cancer cells from death. On a cellular level, HSP molecules have a strong relationship with multiple important biological processes, such as cell differentiation, epithelial-mesenchymal transition (EMT), and fibrosis. Because of the facilitation of HSP family molecules on tumorigenesis, a number of agents and inhibitors are being developed with potent antitumor effects whose target site is the critical structure of HSP molecules. Among all target molecules, HSP70 family and HSP90 are two groups that have been well studied, and therefore, the development of their inhibitors makes great progress. Only a small number of agents, however, have been clinically tested in recruited patients. As a result, more clinical studies are warranted for the establishment of the relationship between the HSP70 family, alongside the HSP90 molecule, and prostate cancer treatment.
RESUMEN
Benign prostatic hyperplasia (BPH) is one of the most common causes of lower urinary tract symptoms (LUTS) in men, which is characterized by a noncancerous enlargement of the prostate. BPH troubles the vast majority of aging men worldwide; however, the pathogenetic factors of BPH have not been completely identified. The heat shock protein 70 (HSP70) subfamily, which mainly includes HSP70, glucose-regulated protein 78 (GRP78) and GRP75, plays a crucial role in maintaining cellular homeostasis. HSP70s are overexpressed in the course of BPH and involved in a variety of biological processes, such as cell survival and proliferation, cell apoptosis, epithelial/mesenchymal transition (EMT) and fibrosis, contributing to the development and progress of prostate diseases. These chaperone proteins also participate in oxidative stress, a cellular stress response that takes place under stress conditions. In addition, HSP70s can bind to the androgen receptor (AR) and act as a regulator of AR activity. This interaction of HSP70s with AR provides insight into the importance of the HSP70 chaperone family in BPH pathogenesis. In this review, we discuss the function of the HSP70 family in prostate glands and the role of HSP70s in the course of BPH. We also review the potential applications of HSP70s as biomarkers of prostate diseases for targeted therapies.
Asunto(s)
Síntomas del Sistema Urinario Inferior , Hiperplasia Prostática , Transición Epitelial-Mesenquimal , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Síntomas del Sistema Urinario Inferior/metabolismo , Síntomas del Sistema Urinario Inferior/patología , Masculino , Próstata/patología , Hiperplasia Prostática/metabolismoRESUMEN
Benign prostatic hyperplasia (BPH) is a chronic condition which mainly affects elderly males. Existing scientific evidences have not completely revealed the pathogenesis of BPH. Glucose-regulated protein 78 (GRP78) is a member of the heat shock protein 70 superfamily, which serves as an important regulator in many diseases. This study aims at elucidating the role of GRP78 in the BPH process. Human prostate tissues, cultured human prostate cell lines (BPH-1 and WPMY-1) and clinical data from BPH patients were utilized. The expression and localization of GRP78 were determined with quantitative real time PCR (qRT-PCR), Western blotting and immunofluorescence staining. GRP78 knockdown and overexpression cell models were created with GRP78 siRNA and GRP78 plasmid transfection. With these models, cell viability, apoptosis rate, as well as marker levels for epithelial-mesenchymal transition (EMT) and oxidative stress (OS) were detected by CCK8 assay, flow cytometry analysis and Western blotting respectively. AKT/mTOR and MAPK/ERK pathways were also evaluated. Results showed GRP78 was localized in the epithelium and stroma of the prostate, with higher expression in BPH tissues. There was no significant difference in GRP78 expression between BPH-1 and WPMY-1 cell lines. In addition, GRP78 knockdown (KD) slowed cell growth and induced apoptosis, without effects on the cell cycle stage of both cell lines. Lack of GRP78 affected expression levels of markers for EMT and OS. Consistently, overexpression of GRP78 completely reversed all effects of knocking down GRP78. We further found that GRP78 modulated cell growth and OS via AKT/mTOR signaling, rather than the MAPK/ERK pathway. Overall, our novel data demonstrates that GRP78 plays a significant role in the development of BPH and suggests that GRP78 might be rediscovered as a new target for treatment of BPH.
Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Estrés Oxidativo , Próstata , Hiperplasia Prostática , Anciano , Ciclo Celular/genética , Chaperón BiP del Retículo Endoplásmico/genética , Chaperón BiP del Retículo Endoplásmico/metabolismo , Transición Epitelial-Mesenquimal/genética , Glucosa/metabolismo , Humanos , Masculino , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
BACKGROUND: C-X-C motif chemokine ligand 13 (CXCL13), a member of the CXC subtype in chemokine superfamily, affects numerous biological processes of various types of cells and the progress of a great number of clinical diseases. The purpose of the current study was to reveal the internal mechanism between CXCL13 and benign prostatic hyperplasia (BPH). METHODS: Human serum, prostate tissues and human prostate cell lines (BPH-1, WPMY-1) were utilized. The effect of recombinant human CXCL13 (rHuCXCL13) protein and the influences of the knockdown/overexpression of CXCL13 on two cell lines were studied. Rescue experiments by anti-CXCR5 were also conducted. In vivo, rHuCXCL13 was injected into the ventral prostate of rats. Additionally, a tissue microarray of hyperplastic prostate tissues was constructed to analyze the correlations between CXCL13 and clinical parameters. RESULTS: CXCL13 was highly expressed in the prostate tissues and upregulated in the BPH group. It was observed that CXCL13 modulated cell proliferation, apoptosis, and the epithelial-mesenchymal transition (EMT) through CXCR5 via AKT and the ERK1/2 pathway in BPH-1, while it contributed to inflammation and fibrosis through CXCR5 via the STAT3 pathway in WPMY-1. In vivo, rHuCXCL13 induced the development of rat BPH. Additionally, CXCL13 was positively correlated with the prostate volume and total prostate specific antigen. CONCLUSIONS: Our novel data demonstrated that CXCL13 modulated cell proliferation, cell cycle, the EMT of epithelial cells, and induced the fibrosis of prostatic stromal cells via a variety of inflammatory factors, suggesting that CXCL13 might be rediscovered as a potential therapeutic target for the treatment of BPH.
Asunto(s)
Próstata , Hiperplasia Prostática , Masculino , Humanos , Ratas , Animales , Próstata/metabolismo , Hiperplasia Prostática/genética , Hiperplasia Prostática/metabolismo , Ligandos , Línea Celular , Proliferación Celular , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismoRESUMEN
Autologous fat transplantation is a versatile tool in reconstructive surgery. Adipose-derived stem cells (ASCs) increase survival of fat grafts and thus are increasingly used for breast reconstruction in breast cancer patients. However, radiation and/or chemotherapy have been proposed to inhibit soft tissue regeneration in wound healing thus suggesting alteration in stem cell pathways. Therefore, elucidating effects of radiation and chemotherapy on ASCs is critical if one desires to enhance the survival of fat grafts in patients. This review outlines our work evaluating the function and recoverability of ASCs from radiation or chemotherapy patients, focusing specifically on their availability as a source of autologous stem cells for fat grafting and breast reconstruction in cancer patients. Even though evidence suggests radiation and chemotherapy negatively influence ASCs at the cellular level, the efficiency of the isolation and differentiation capacity did not appear influenced in patients after receiving chemotherapy treatment, although fat from radiated patients exhibited significantly altered ASC differentiation into endothelial-like cells. Further, the in vitro growth rates of patient's ASCs do not differ significantly before or after treatment. Taken together, these studies suggest ASCs as an important new tool for grafting and reconstruction even when radiation and chemotherapy treatment are involved.
RESUMEN
BACKGROUND: Benign prostatic hyperplasia (BPH) is one of the most common illnesses in aging men. Recent studies found that bone morphogenetic protein 5 (BMP5) is upregulated in BPH tissues, however, the role of BMP5 in the development of BPH has not been examined. The current study aims to elucidate the potential roles of BMP5 and related signaling pathways in BPH. METHODS: Human prostate cell lines (BPH-1, WPMY-1) and human/rat hyperplastic prostate tissues were utilized. Western blot, quantitative real-time polymerase chain reaction, immunofluorescent staining, and immunohistochemical staining were performed. BMP5-silenced and -overexpressed cell models were generated and then cell cycle progression, apoptosis, and proliferation were determined. The epithelial-mesenchymal transition (EMT) was also quantitated. And rescue experiments by BMP/Smad signaling pathway agonist or antagonist were accomplished. Moreover, BPH-related tissue microarray analysis was performed and associations between clinical parameters and expression of BMP5 were analyzed. RESULTS: Our study demonstrated that BMP5 was upregulated in human and rat hyperplastic tissues and localized both in the epithelial and stromal compartments of the prostate tissues. E-cadherin was downregulated in hyperplastic tissues, while N-cadherin and vimentin were upregulated. Overexpression of BMP5 enhanced cell proliferation and the EMT process via phosphorylation of Smad1/5/8, while knockdown of BMP5 induced cell cycle arrest at G0/G1 phase and blocked the EMT process. Moreover, a BMP/Smad signaling pathway agonist and antagonist reversed the effects of BMP5 silencing and overexpression, respectively. In addition, BMP5 expression positively correlated with prostate volume and total prostate-specific antigen. CONCLUSION: Our novel data suggest that BMP5 modulated cell proliferation and the EMT process through the BMP/Smad signaling pathway which could contribute to the development of BPH. However, further studies are required to determine the exact mechanism. Our study also indicated that BMP/Smad signaling may be rediscovered as a promising new therapeutic target for the treatment of BPH.
Asunto(s)
Proteína Morfogenética Ósea 5/metabolismo , Transición Epitelial-Mesenquimal/genética , Hiperplasia Prostática , Proteínas Smad/metabolismo , Animales , Apoptosis , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Descubrimiento de Drogas , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patología , Ratas , Transducción de Señal/efectos de los fármacos , Regulación hacia ArribaRESUMEN
Benign prostatic hyperplasia (BPH) is a quite common illness but its etiology and mechanism remain unclear. Neural epidermal growth factor-like like 2 (NELL2) plays multifunctional roles in neural cell growth and is strongly linked to the urinary tract disease. Current study aims to determine the expression, functional activities and underlying mechanism of NELL2 in BPH. Human prostate cell lines and tissues from normal human and BPH patients were utilized. Immunohistochemical staining, immunofluorescent staining, RT-polymerase chain reaction (PCR) and Western blotting were performed. We further generated cell models with NELL2 silenced or overexpressed. Subsequently, proliferation, cycle, and apoptosis of prostate cells were determined by cell counting kit-8 (CCK-8) assay and flow cytometry analysis. The epithelial-mesenchymal transition (EMT) and fibrosis process were also analyzed. Our study revealed that NELL2 was up-regulated in BPH samples and localized in the stroma and the epithelium compartments of human prostate tissues. NELL2 deficiency induced a mitochondria-dependent cell apoptosis, and inhibited cell proliferation via phosphorylating extracellular signal-regulated kinase 1/2 (ERK1/2) activation. Additionally, suppression of ERK1/2 with U0126 incubation could significantly reverse NELL2 deficiency triggered cell apoptosis. Consistently, overexpression of NELL2 promoted cell proliferation and inhibited cell apoptosis. However, NELL2 interference was observed no effect on EMT and fibrosis process. Our novel data demonstrated that up-regulation of NELL2 in the enlarged prostate could contribute to the development of BPH through enhancing cell proliferation and inhibited a mitochondria-dependent cell apoptosis via the ERK pathway. The NELL2-ERK system might represent an important target to facilitate the development of future therapeutic approaches in BPH.
Asunto(s)
Apoptosis , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Próstata/enzimología , Hiperplasia Prostática/enzimología , Adulto , Anciano , Estudios de Casos y Controles , Línea Celular , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/patología , Proteínas del Tejido Nervioso/genética , Fosforilación , Próstata/patología , Hiperplasia Prostática/genética , Hiperplasia Prostática/patología , Transducción de Señal , Adulto JovenRESUMEN
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney tumor worldwide. Analysis of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases showed that the immune-related gene (IRG) hematopoietic cell signal transducer (HCST) could provide guidance for the diagnosis, prognosis, and treatment of ccRCC. The RNA-seq data of ccRCC tissues were extracted from two databases: TCGA (https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga) and GEO (https://www.ncbi.nlm.nih.gov/geo/). Corresponding clinical information was downloaded from TCGA. Immune-related gene data were extracted from the IMMPORT website (https://www.immport.org/). Differential analysis with R software (https://www.r-project.org/) was used to obtain a prognosis model of ccRCC IRGs. The differences were combined with the clinical data to assess the usefulness of the HCST as a prognostic biomarker. Based on data obtained from the Oncomine (https://www.oncomine.org/), Human Protein Atlas (https://www.proteinatlas.org/), and PubMed (https://pubmed.ncbi.nlm.nih.gov/) databases, the expression levels of the HCST in ccRCC, clinical-pathological indicators of relevance, and influence on prognosis were analyzed. Regulation of the HCST gene in ccRCC was assessed by gene set enrichment analysis (GSEA). In TCGA/GEO databases, the high HCST expression in tumor tissues was significantly correlated to the TMN stage, tumor grade, invasion depth, and lymphatic metastasis (p < 0.05). The overall survival (OS) of patients with high HCST gene expression was significantly lower than that of patients with low HCST gene expression (p < 0.001). Multivariate Cox regression analysis suggested that the HCST expression level [hazard ratio (HR) = 1.630, 95% confidence interval (CI) = 1.042-2.552], tumor cell grade (HR = 1.829, 95% CI = 1.115-3.001), and distant metastasis (HR = 2.634, 95%, CI = 1.562-4.442) were independent risk factors affecting the OS of ccRCC patients (all, p < 0.05). The GSEA study showed that there was significant enrichment in cell adhesion, tumorigenesis, and immune and inflammatory responses in HCST high expression samples. Hematopoietic cell signal transducer expression was closely associated with the levels of infiltrating immune cells around ccRCC tissues, especially dendritic cells (DCs). In conclusion, the present study suggested that the HCST was interrelated to the clinicopathology and poor prognosis of ccRCC. High HCST expression was also closely correlated with the levels of tumor-infiltrating immune cells, especially DCs.
RESUMEN
Benign prostatic hyperplasia (BPH) is a common disease in aging males. It has been proven that the Hedgehog (HH) is implied as an effective and fundamental regulatory growth factor signal for organogenesis, homeostasis, and regeneration. Smoothened (SMO), as the major control point of HH signals, activates aberrantly in most human solid tumors. However, the specific function of SMO and its downstream glioma-associated oncogene (GLI) family in BPH has not been well understood. Here, we first revealed that the SMO cascade was upregulated in BPH tissues and was localized in both the stromal and the epithelium compartments of human prostate tissues. Cyclopamine, as a specific SMO inhibitor, was incubated with BPH-1 and WPMY-1, and intraperitoneally injected into a BPH rat model established by castration with testosterone supplementation. SMO inhibition could induce cell apoptosis, cell cycle arrest at the G0/G1 phase, and a reduction of tissue fibrosis markers, both in vitro and in vivo. Finally, a tissue microarray, containing 104 BPH specimens, was constructed to analyze the correlations between the expression of SMO cascade and clinical parameters. The GLI2 was correlated positively with nocturia and negatively with fPSA. The GLI3 was in a positive relationship with International Prostate Symptom Score and nocturia. In conclusion, our study suggested that SMO cascade could play important roles in the development of BPH and it might be rediscovered as a promising therapeutic target for BPH.