Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38876101

RESUMEN

Providing outdoor recreational opportunities to people and protecting wildlife are dual goals of many land managers. However, recreation is associated with negative effects on wildlife, ranging from increased stress hormones1,2 to shifts in habitat use3,4,5 to lowered reproductive success.6,7 Noise from recreational activities can be far reaching and have similar negative effects on wildlife, yet the impacts of these auditory encounters are less studied and are often unobservable. We designed a field-based experiment to both isolate and quantify the effects of recreation noise on several mammal species and test the effects of different recreation types and group sizes. Animals entering our sampling arrays triggered cameras to record video and broadcast recreation noise from speakers ∼20 m away. Our design allowed us to observe and classify behaviors of wildlife as they were exposed to acoustic stimuli. We found wildlife were 3.1-4.7 times more likely to flee and were vigilant for 2.2-3.0 times longer upon hearing recreation noise compared with controls (natural sounds and no noise). Wildlife abundance at our sampling arrays was 1.5 times lower the week following recreation noise deployments. Noise from larger groups of vocal hikers and mountain bikers caused the highest probability of fleeing (6-8 times more likely to flee). Elk were the most sensitive species to recreation noise, and large carnivores were the least sensitive. Our findings indicate that recreation noise alone caused anti-predator responses in wildlife, and as outdoor recreation continues to increase in popularity and geographic extent,8,9 noise from recreation may result in degraded or indirect wildlife habitat loss.

2.
Ecol Appl ; 32(3): e2532, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35044025

RESUMEN

Understanding factors that influence real-world public conservation behaviors is critical for developing successful conservation policies and management actions. Citizens of Colorado, USA recently passed a ballot initiative to restore the gray wolf to its former range within the state. The >3 million votes offer an unprecedented opportunity to test factors that influenced decisions to support or oppose this conservation action. We created spatial linear regression models to assess the relationship between support for wolf restoration and (1) the presidential vote, (2) distance to conservation intervention (i.e., proposed wolf reintroduction and existing wolves), and measures of (3) livelihood and (4) demographics using precinct-level data. Our results demonstrate the strong relationship between support for wolf restoration and political support for the Democratic candidate for president in the 2020 election, and highlight how other factors, including increased age, participation in elk hunting, and proximity to the reintroduction region were associated with less support. Our findings underscore the critical role of politicization on public conservation action and the need to develop outreach and engagement strategies to mitigate polarization.


Asunto(s)
Lobos , Animales , Colorado , Conservación de los Recursos Naturales , Modelos Lineales , Política
3.
Integr Comp Biol ; 61(3): 1202-1215, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34272862

RESUMEN

Global expansion of lighting and noise pollution alters how animals receive and interpret environmental cues. However, we lack a cross-taxon understanding of how animal traits influence species vulnerability to this growing phenomenon. This knowledge is needed to improve the design and implementation of policies that mitigate or reduce sensory pollutants. We present results from an expert knowledge survey that quantified the relative influence of 21 ecological, anatomical, and physiological traits on the vulnerability of terrestrial vertebrates to elevated levels of anthropogenic lighting and noise. We aimed not only to quantify the importance of threats and the relative influence of traits as viewed by sensory and wildlife experts, but to examine knowledge gaps based on the variation in responses. Identifying traits that had less consensus can guide future research for strengthening ecologists' and conservation biologists' understanding of sensory abilities. Our findings, based on 280 responses of expert opinion, highlight the increasing recognition among experts that sensory pollutants are important to consider in management and conservation decisions. Participant responses show mounting threats to species with narrow niches; especially habitat specialists, nocturnal species, and those with the greatest ability to differentiate environmental visual and auditory cues. Our results call attention to the threat specialist species face and provide a generalizable understanding of which species require additional considerations when developing conservation policies and mitigation strategies in a world altered by expanding sensory pollutant footprints. We provide a step-by-step example for translating these results to on-the-ground conservation planning using two species as case studies.


Asunto(s)
Contaminación Ambiental , Luz , Ruido , Vertebrados , Animales , Conservación de los Recursos Naturales , Ecosistema , Ruido/efectos adversos
4.
Glob Chang Biol ; 27(17): 3987-4004, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34111313

RESUMEN

The extent of artificial night light and anthropogenic noise (i.e., "light" and "noise") impacts is global and has the capacity to threaten species across diverse ecosystems. Existing research involving impacts of light or noise has primarily focused on noise or light alone and single species; however, these stimuli often co-occur and little is known about how co-exposure influences wildlife and if and why species may vary in their responses. Here, we had three aims: (1) to investigate species-specific responses to light, noise, and the interaction between the two using a spatially explicit approach to model changes in abundance of 140 prevalent bird species across North America, (2) to investigate responses to the interaction between light exposure and night length, and (3) to identify functional traits and habitat affiliations that explain variation in species-specific responses to these sensory stimuli with phylogenetically informed models. We found species that responded to noise exposure generally decreased in abundance, and the additional presence of light interacted synergistically with noise to exacerbate its negative effects. Moreover, the interaction revealed negative emergent responses for several species that only reacted when light and noise co-occurred. Additionally, an interaction between light and night length revealed 47 species increased in abundance with light exposure during longer nights. In addition to modifying behavior with optimal temperature and potential foraging opportunities, birds might be attracted to light, yet suffer inadvertent physiological consequences. The trait that most strongly related to avian response to light and noise was habitat affiliation. Specifically, species that occupy closed habitat were less tolerant of both sensory stressors compared to those that occupy open habitat. Further quantifying the contexts and intrinsic traits that explain how species respond to noise and light will be fundamental to understanding the ecological consequences of a world that is ever louder and brighter.


Asunto(s)
Aves , Ecosistema , Animales , Animales Salvajes , Ruido/efectos adversos , Especificidad de la Especie
5.
J Anim Ecol ; 90(2): 330-342, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32895962

RESUMEN

The integration of citizen scientists into ecological research is transforming how, where, and when data are collected, and expanding the potential scales of ecological studies. Citizen-science projects can provide numerous benefits for participants while educating and connecting professionals with lay audiences, potentially increasing the acceptance of conservation and management actions. However, for all the benefits, collection of citizen-science data is often biased towards areas that are easily accessible (e.g. developments and roadways), and thus data are usually affected by issues typical of opportunistic surveys (e.g. uneven sampling effort). These areas are usually illuminated by artificial light at night (ALAN), a dynamic sensory stimulus that alters the perceptual world for both humans and wildlife. Our goal was to test whether satellite-based measures of ALAN could improve our understanding of the detection process of citizen-scientist-reported sightings of a large mammal. We collected observations of American black bears Ursus americanus (n = 1,315) outside their primary range in Minnesota, USA, as part of a study to gauge population expansion. Participants from the public provided sighting locations of bears on a website. We used an occupancy modelling framework to determine how well ALAN accounted for observer metrics compared to other commonly used metrics (e.g. housing density). Citizen scientists reported 17% of bear sightings were under artificially lit conditions and monthly ALAN estimates did the best job accounting for spatial bias in detection of all observations, based on AIC values and effect sizes ( ß^  = 0.81, 0.71-0.90 95% CI). Bear detection increased with elevated illuminance; relative abundance was positively associated with natural cover, proximity to primary bear range and lower road density. Although the highest counts of bear sightings occurred in the highly illuminated suburbs of the Minneapolis-St. Paul metropolitan region, we estimated substantially higher bear abundance in another region with plentiful natural cover and low ALAN (up to ~375% increased predicted relative abundance) where observations were sparse. We demonstrate the importance of considering ALAN radiance when analysing citizen-scientist-collected data, and we highlight the ways that ALAN data provide a dynamic snapshot of human activity.


Asunto(s)
Ciencia Ciudadana , Ursidae , Animales , Humanos , Variaciones Dependientes del Observador
6.
Nature ; 587(7835): 605-609, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177710

RESUMEN

Expansion of anthropogenic noise and night lighting across our planet1,2 is of increasing conservation concern3-6. Despite growing knowledge of physiological and behavioural responses to these stimuli from single-species and local-scale studies, whether these pollutants affect fitness is less clear, as is how and why species vary in their sensitivity to these anthropic stressors. Here we leverage a large citizen science dataset paired with high-resolution noise and light data from across the contiguous United States to assess how these stimuli affect reproductive success in 142 bird species. We find responses to both sensory pollutants linked to the functional traits and habitat affiliations of species. For example, overall nest success was negatively correlated with noise among birds in closed environments. Species-specific changes in reproductive timing and hatching success in response to noise exposure were explained by vocalization frequency, nesting location and diet. Additionally, increased light-gathering ability of species' eyes was associated with stronger advancements in reproductive timing in response to light exposure, potentially creating phenological mismatches7. Unexpectedly, better light-gathering ability was linked to reduced clutch failure and increased overall nest success in response to light exposure, raising important questions about how responses to sensory pollutants counteract or exacerbate responses to other aspects of global change, such as climate warming. These findings demonstrate that anthropogenic noise and light can substantially affect breeding bird phenology and fitness, and underscore the need to consider sensory pollutants alongside traditional dimensions of the environment that typically inform biodiversity conservation.


Asunto(s)
Aves/fisiología , Iluminación/efectos adversos , Ruido/efectos adversos , Reproducción/efectos de la radiación , Animales , Aves/clasificación , Ciencia Ciudadana , Tamaño de la Nidada/efectos de la radiación , Espacios Confinados , Conjuntos de Datos como Asunto , Dieta/veterinaria , Ecosistema , Femenino , Mapeo Geográfico , Masculino , Comportamiento de Nidificación/fisiología , Comportamiento de Nidificación/efectos de la radiación , Fenómenos Fisiológicos Oculares/efectos de la radiación , Reproducción/fisiología , Especificidad de la Especie , Estados Unidos , Vocalización Animal/efectos de la radiación
7.
Conserv Physiol ; 7(1): coy067, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30680216

RESUMEN

Unmanned aircraft systems (UAS; i.e. 'drones') provide new opportunities for data collection in ecology, wildlife biology and conservation. Yet, several studies have documented behavioral or physiological responses to close-proximity UAS flights. We experimentally tested whether American black bears (Ursus americanus) habituate to repeated UAS exposure and whether tolerance levels persist during an extended period without UAS flights. Using implanted cardiac biologgers, we measured heart rate (HR) of five captive bears before and after the first of five flights each day. Spikes in HR, a measure of stress, diminished across the five flights within each day and over the course of 4 weeks of twice-weekly exposure. We halted flights for 118 days, and when we resumed, HR responses were similar to that at the end of the previous trials. Our findings highlight the capacity of a large mammal to become and remain habituated to a novel anthropogenic stimulus in a relatively short time (3-4 weeks). However, such habituation to mechanical noises may reduce their wariness of other human threats. Also, whereas cardiac effects diminished, frequent UAS disturbances may have other chronic physiological effects that were not measured. We caution that the rate of habituation may differ between wild and captive animals: while the captive bears displayed large initial spikes in HR change (albeit not as large as wild bears), these animals were accustomed to regular exposure to humans and mechanical noises that may have hastened habituation to the UAS.

8.
Ecol Evol ; 8(17): 9017-9033, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30271563

RESUMEN

Predators directly impact prey populations through lethal encounters, but understanding nonlethal, indirect effects is also critical because foraging animals often face trade-offs between predator avoidance and energy intake. Quantifying these indirect effects can be difficult even when it is possible to monitor individuals that regularly interact. Our goal was to understand how movement and resource selection of a predator (wolves; Canis lupus) influence the movement behavior of a prey species (moose; Alces alces). We tested whether moose avoided areas with high predicted wolf resource use in two study areas with differing prey compositions, whether avoidance patterns varied seasonally, and whether daily activity budgets of moose and wolves aligned temporally. We deployed GPS collars on both species at two sites in northern Minnesota. We created seasonal resource selection functions (RSF) for wolves and modeled the relationship between moose first-passage time (FPT), a method that discerns alterations in movement rates, and wolf RSF values. Larger FPT values suggest rest/foraging, whereas shorter FPT values indicate travel/fleeing. We found that the movements of moose and wolves peaked at similar times of day in both study areas. Moose FPTs were 45% lower in areas most selected for by wolves relative to those avoided. The relationship between wolf RSF and moose FPT was nonlinear and varied seasonally. Differences in FPT between low and high RSF values were greatest in winter (-82.1%) and spring (-57.6%) in northeastern Minnesota and similar for all seasons in the Voyageurs National Park ecosystem. In northeastern Minnesota, where moose comprise a larger percentage of wolf diet, the relationship between moose FPT and wolf RSF was more pronounced (ave. across seasons: -60.1%) than the Voyageurs National Park ecosystem (-30.4%). These findings highlight the role wolves can play in determining moose behavior, whereby moose spend less time in areas with higher predicted likelihood of wolf resource selection.

9.
Curr Zool ; 64(4): 419-432, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30109872

RESUMEN

Populations inhabiting the bioclimatic edges of a species' geographic range face an increasing amount of stress from alterations to their environment associated with climate change. Moose Alces alces are large-bodied ungulates that are sensitive to heat stress and have exhibited population declines and range contractions along their southern geographic extent. Using a hidden Markov model to analyze movement and accelerometer data, we assigned behaviors (rest, forage, or travel) to all locations of global positioning system-collared moose (n = 13, moose-years = 19) living near the southern edge of the species' range in and around Voyageurs National Park, MN, USA. We assessed how moose behavior changed relative to weather, landscape, and the presence of predators. Moose significantly reduced travel and increased resting behaviors at ambient temperatures as low as 15 °C and 24 °C during the spring and summer, respectively. In general, moose behavior changed seasonally in association with distance to lakes and ponds. Moose used wetlands for travel throughout the year, rested in conifer forests, and foraged in shrublands. The influence of wolves Canis lupus varied among individual moose and season, but the largest influence was a reduction in travel during spring when near a wolf home range core, primarily by pregnant females. Our analysis goes beyond habitat selection to capture how moose alter their activities based on their environment. Our findings, along with climate change forecasts, suggest that moose in this area will be required to further alter their activity patterns and space use in order to find sufficient forage and avoid heat stress.

10.
Curr Zool ; 64(4): 547, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30109871

RESUMEN

[This corrects the article DOI: 10.1093/cz/zox047.]

11.
Curr Biol ; 25(17): 2278-83, 2015 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-26279232

RESUMEN

Unmanned aerial vehicles (UAVs) have the potential to revolutionize the way research is conducted in many scientific fields. UAVs can access remote or difficult terrain, collect large amounts of data for lower cost than traditional aerial methods, and facilitate observations of species that are wary of human presence. Currently, despite large regulatory hurdles, UAVs are being deployed by researchers and conservationists to monitor threats to biodiversity, collect frequent aerial imagery, estimate population abundance, and deter poaching. Studies have examined the behavioral responses of wildlife to aircraft (including UAVs), but with the widespread increase in UAV flights, it is critical to understand whether UAVs act as stressors to wildlife and to quantify that impact. Biologger technology allows for the remote monitoring of stress responses in free-roaming individuals, and when linked to locational information, it can be used to determine events or components of an animal's environment that elicit a physiological response not apparent based on behavior alone. We assessed effects of UAV flights on movements and heart rate responses of free-roaming American black bears. We observed consistently strong physiological responses but infrequent behavioral changes. All bears, including an individual denned for hibernation, responded to UAV flights with elevated heart rates, rising as much as 123 beats per minute above the pre-flight baseline. It is important to consider the additional stress on wildlife from UAV flights when developing regulations and best scientific practices.


Asunto(s)
Frecuencia Cardíaca , Tecnología de Sensores Remotos/efectos adversos , Ursidae/fisiología , Aeronaves , Animales , Femenino , Masculino , Minnesota , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...