Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 136(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37259831

RESUMEN

During developmental and immune responses, cells move towards or away from some signals. Although much is known about chemoattraction, chemorepulsion (the movement of cells away from a stimulus) remains poorly understood. Proliferating Dictyostelium discoideum cells secrete a chemorepellent protein called AprA. Examining existing knockout strains, we previously identified proteins required for AprA-induced chemorepulsion, and a genetic screen suggested that the enzyme phosphatidylinositol phosphate kinase A (PIPkinA, also known as Pik6) might also be needed for chemorepulsion. Here, we show that cells lacking PIPkinA are not repelled by AprA, and that this phenotype is rescued by expression of PIPkinA. To bias cell movement, AprA inhibits Ras activation at the side of the cell closest to the source of AprA, and we find that PIPkinA is required for AprA to inhibit Ras activation. PIPkinA decreases levels of phosphatidylinositol 4-phosphate [PI(4)P] and phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3], and possibly because of these effects, potentiates phagocytosis and inhibits cell proliferation. Cells lacking PIPkinA show normal AprA binding, suggesting that PIPkinA regulates chemorepulsion at a step between the AprA receptor and AprA inhibition of Ras activation.


Asunto(s)
Dictyostelium , Dictyostelium/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proliferación Celular , Pruebas Genéticas
2.
Nat Commun ; 13(1): 1647, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347143

RESUMEN

Bacterial natural product biosynthetic genes, canonically clustered, have been increasingly found to rely on hidden enzymes encoded elsewhere in the genome for completion of biosynthesis. The study and application of lanthipeptides are frequently hindered by unclustered protease genes required for final maturation. Here, we establish a global correlation network bridging the gap between lanthipeptide precursors and hidden proteases. Applying our analysis to 161,954 bacterial genomes, we establish 5209 correlations between precursors and hidden proteases, with 91 prioritized. We use network predictions and co-expression analysis to reveal a previously missing protease for the maturation of class I lanthipeptide paenilan. We further discover widely distributed bacterial M16B metallopeptidases of previously unclear biological function as a new family of lanthipeptide proteases. We show the involvement of a pair of bifunctional M16B proteases in the production of previously unreported class III lanthipeptides with high substrate specificity. Together, these results demonstrate the strength of our correlational networking approach to the discovery of hidden lanthipeptide proteases and potentially other missing enzymes for natural products biosynthesis.


Asunto(s)
Genoma Bacteriano , Péptido Hidrolasas , Bacterias , Endopeptidasas , Genoma Bacteriano/genética , Péptido Hidrolasas/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...