Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Ayurveda Integr Med ; 14(5): 100773, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37660545

RESUMEN

This article narrates the potential role of sesame oil-based Anu taila for respiratory health and the prevention of COVID-19. Ayurveda recommends the use of sesame oil and A. taila as a part of daily routine (dinacharya) for oral gargling and transnasal application (Nasya) for preventing upper respiratory tract infections. Recent studies on COVID-19 have elucidated the activity of certain fatty acids in restricting viral binding. Based on the evidence gathered from in-silico, pre-clinical, and pharmacological studies as well as references from classical textbooks of Ayurveda, this article infers that the transnasal application of sesame oil and/or A. taila could provide resilience/protection to the respiratory system. It can act as a 'biological mask' to prevent respiratory infections like COVID-19. Detailed pharmacological study can give fuller confirmation of our informed "inference" that A. taila offers a cost-effective intervention for the prevention of COVID-19 like infections of the upper respiratory tract.

2.
J Biosci Bioeng ; 134(2): 95-104, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35659719

RESUMEN

Present work reports a simple approach of microsupplementing nitrogen starved production media with potential activators of lipogenic enzymes for boosting de novo lipogenesis and demonstrated a 70-117 % rise in lipid content (LC) of yeast isolate Geotrichum candidum NBT-1. A hypothesis was proposed to increase the LC in the isolate at fixed minimum C/N ratio and small molecular activators for 3 key enzymes of lipogenic pathways. ATP citrate lyase, malic enzyme and acetyl CoA-carboxylase were screened in silico. Screened molecules were microsupplemented in nitrogen-starved media for examining the actual influence of their individual and synergistic combination on boosting LC of the isolate, which revealed sodium acetate as a major effector. Acetate in 4 mM concentration, independently and in combination with citric acid and sucrose resulted in a 2-2.2-fold increase in G. candidum LC from 24.8% in control to 49.27% and 53.96%, respectively. A volumetric lipid productivity of 0.0288 g/L/h with appreciable lipid coefficient of 9.77 was achieved in acetate supplemented media. Extracted lipids were 70-90% concentrated in a medium chain fatty acid (MCFA)-caprylic acid (C8:0), which has upsurging nutritional and nutraceutical importance.


Asunto(s)
Lipogénesis , Saccharomyces cerevisiae , Acetatos/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Nitrógeno/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
Curr Microbiol ; 77(11): 3738-3749, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32778944

RESUMEN

Single cell oils (SCO) are oils derived from microorganisms which have potential to hyperaccumulate intracellular lipids (called oleaginous) under some essential nutrient (nitrogen, phosphorous or sometimes sulphur) starvation and an excess of carbon. The present work investigates the influence of these key parameters (for triggering oleaginicity), i.e. carbon (C) and nitrogen (N) on oleaginous behaviour of an oleaginous isolate, with the objective of improving the lipid content and obtaining oils of applicative interest. Eleven yeasts were isolated from rotten fruits and a unique yeast from rotten apple was screened on the basis of its ~ 20% (of dry mass) lipid content (LC), trademark of oleaginicity under nitrogen-stressed culture conditions. Subsequent investigation on influence of C, N and w/w ratio of carbon source concentration (Cs) to nitrogen source concentration (Ns) was conducted on this isolate. The isolate was identified as a Deuteromycete-Geotrichum candidum. 4.8 g/l was found to be minimum N concentration and glucose as suitable C source for optimum balance between biomass and lipid content. The highest LC of 73.6% (172.5% higher compared to 27% LC at Cs/Ns 80/4.8) was obtained at Cs/Ns 150/4.8 with a lipid coefficient of 8.7 (g lipid/100 g substrate). While remarkably higher production economy (lipid coefficient of 28.45) was noted at Cs/Ns 100/4.8 with significant LC of 54.4% (~ 100% higher than at Cs/Ns 80/4.8). The derived oils were predominantly rich in medium-chain fatty acids (MCFA)-caprylic acid, rare in plant oils. G. candidum is a previously referred oleaginous species; however, for the first time this study illustrates its detailed oleaginous behaviour and lipid compositional characteristics with varying nutritional parameters. The work is a progressive contribution towards current and upcoming researches in field of SCOs. Compositional characteristics of derived oils, make it an important candidate for potential medical and nutritional applications in future.


Asunto(s)
Ácidos Grasos , Geotrichum , Lípidos , Aceites de Plantas
4.
Prep Biochem Biotechnol ; 50(8): 768-780, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32196400

RESUMEN

The present study demonstrates a comparative analysis between the artificial neural network (ANN) and response surface methodology (RSM) as optimization tools for pretreatment and enzymatic hydrolysis of lignocellulosic rice straw. The efficacy for both the processes, that is, pretreatment and enzymatic hydrolysis was evaluated using correlation coefficient (R2) & mean squared error (MSE). The values of R2 obtained by ANN after training, validation, and testing were 1, 0.9005, and 0.997 for pretreatment and 0.962, 0.923, and 0.9941 for enzymatic saccharification, respectively. On the other hand, the R2 values obtained with RSM were 0.9965 for cellulose recovery and 0.9994 for saccharification efficiency. Thus, ANN and RSM together successfully identify the substantial process conditions for rice straw pretreatment and enzymatic saccharification. The percentage of error for ANN and RSM were 0.009 and 0.01 for cellulose recovery and for 0.004 and 0.005 for saccharification efficiency, respectively, which showed the authority of ANN in exemplifying the non-linear behavior of the system.


Asunto(s)
Celulosa/metabolismo , Lignina/metabolismo , Oryza/metabolismo , Biocatálisis , Biotecnología , Hidrólisis , Redes Neurales de la Computación
5.
J Biosci Bioeng ; 127(4): 458-464, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30862359

RESUMEN

Enthusiasm for mining isoprenoid-based flavors, pharmaceuticals, and nutraceuticals from GRAS (Generally Regarded as Safe) status microbial hosts has increased in the past few years due to the limitations associated with their plant-based extraction and chemical synthesis. Bacillus subtilis, a well-known GRAS microbe, is a promising alternative due to its fast growth rate and the ability to metabolize complex carbon sources. The study focused on the high-specificity production of isopentenol in B. subtilis by modulating the culture medium. Media modulation led to a 2.5 folds improvement in isopentenol titer in the wild-type strain. In the recombinant strain, optimization of physico-chemical factors, coupled with overexpression of the nudF enzyme resulted in a maximum isopentenol titer of ∼6 mg/L in a shake flask. The recombinant strain produced ∼5 mg/L isoprenol (∼80% of the total isopentenol production) and ∼1.8 mg/L prenol (∼65% of the total isopentenol production) by utilizing sorbitol and pyruvate as the carbon sources, respectively. Replacement of glucose with sorbitol and pyruvate reduced the production of the undesired metabolites and enhanced high-specificity production of isopentenol. Upon replacement of the carbon source with a low-cost substrate, a non-detoxified rice-straw hydrolysate, the engineered strain produced 2.19 mg/L isopentenol. This proof-of-concept study paves the path for the high-specificity production and cost-effective recovery of isopentenol from industrially competent microbial strains with engineered isoprenoid pathways.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/metabolismo , Medios de Cultivo/farmacología , Técnicas Microbiológicas/métodos , Pentanoles/metabolismo , Bacillus subtilis/genética , Técnicas de Cultivo Celular por Lotes/economía , Técnicas de Cultivo Celular por Lotes/métodos , Biomasa , Análisis Costo-Beneficio , Medios de Cultivo/química , Ingeniería Metabólica/economía , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Técnicas Microbiológicas/economía , Organismos Modificados Genéticamente , Oryza , Ácido Pirúvico/metabolismo
6.
Folia Microbiol (Praha) ; 63(5): 547-568, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29687420

RESUMEN

The reserves of fossil-based fuels, which currently seem sufficient to meet the global demands, is inevitably on the verge of exhaustion. Contemporary raw material for alternate fuel like biodiesel is usually edible plant commodity oils, whose increasing public consumption rate raises the need of finding a non-edible and fungible alternate oil source. In this quest, single cell oils (SCO) from oleaginous yeasts and fungi can provide a sustainable alternate of not only functional but also valuable (polyunsaturated fatty acids (PUFA)-rich) lipids. Researches are been increasingly driven towards increasing the SCO yield in order to realize its commercial importance. However, bulk requirement of expensive synthetic carbon substrate, which inflates the overall SCO production cost, is the major limitation towards complete acceptance of this technology. Even though substrate cost minimization could make the SCO production profitable is uncertain, it is still essential to identify suitable cheap and abundant substrates in an attempt to potentially reduce the overall process economy. One of the most sought-after in-expensive carbon reservoirs, agro-industrial wastes, can be an attractive replacement to expensive synthetic carbon substrates in this regard. The present review assess these possibilities referring to the current experimental investigations on oleaginous yeasts, and fungi reported for conversion of agro-industrial feedstocks into triacylglycerols (TAGs) and PUFA-rich lipids. Multiple associated factors regulating lipid accumulation utilizing such substrates and impeding challenges has been analyzed. The review infers that production of bulk oil in combination to high-value fatty acids, co-production strategies for SCO and different microbial metabolites, and reutilization and value addition to spent wastes could possibly leverage the high operating costs and help in commencing a successful biorefinery. Rigorous research is nevertheless required whether it is PUFA-rich oil production (for competing with algal omega oils) or neutral bulk oil production (for overcoming yield limitations and managing process economy) to establish this potential source as future resource.


Asunto(s)
Agricultura , Biocombustibles , Residuos Industriales , Reactores Biológicos/microbiología , Metabolismo de los Hidratos de Carbono , Fermentación , Hongos/metabolismo , Lignina/metabolismo , Microalgas/metabolismo , Levaduras/metabolismo
7.
Biotechnol Rep (Amst) ; 13: 58-71, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28352564

RESUMEN

Heavy metal contamination has been recognized as a major public health risk, particularly in developing countries and their toxicological manifestations are well known. Conventional remediation strategies are either expensive or they generate toxic by-products, which adversely affect the environment. Therefore, necessity for an environmentally safe strategy motivates interest towards biological techniques. One of such most profoundly driven approach in recent times is biosorption through microbial biomass and their products. Extracellular polymeric substances are such complex blend of high molecular weight microbial (prokaryotic and eukaryotic) biopolymers. They are mainly composed of proteins, polysaccharides, uronic acids, humic substances, lipids etc. One of its essential constituent is the exopolysaccharide (EPS) released out of self defense against harsh conditions of starvation, pH and temperature, hence it displays exemplary physiological, rheological and physio-chemical properties. Its net anionic makeup allows the biopolymer to effectively sequester positively charged heavy metal ions. The polysaccharide has been expounded deeply in this article with reference to its biosynthesis and emphasizes heavy metal sorption abilities of polymer in terms of mechanism of action and remediation. It reports current investigation and strategic advancements in dealing bacterial cells and their EPS in diverse forms - mixed culture EPS, single cell EPS, live, dead or immobilized EPS. A significant scrutiny is also involved highlighting the existing challenges that still lie in the path of commercialization. The article enlightens the potential of EPS to bring about bio-detoxification of heavy metal contaminated terrestrial and aquatic systems in highly sustainable, economic and eco-friendly manner.

8.
Springerplus ; 2(1): 7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23483108

RESUMEN

Acquired Immunodeficiency Syndrome (AIDS) is one of the most critically acclaimed endemic diseases, caused by two lentiviruses HIV-1 and 2. HIV-2 displays intimate serological and antigenic resemblance to Simian Immunodeficiency Virus (SIV) along with less pathogenicity, lower infectivity and appreciable cross reactivity with HIV-1 antigens. The present era is confronted with the challenge to fabricate a vaccine effective against all clades of both the species of HIV. But vaccine development against HIV-1 has proven highly intricate, moreover the laborious and deficient conventional approaches has slackened the pace regarding the development of new vaccines. These concerns may be tackled with the development of HIV-2 vaccine as a natural control of HIV-1 that has been found in ancestors of HIV-2 i.e. African monkeys, mangabeys and macaques. Thereby, suggesting the notion of cross protection among HIV-2 and HIV-1. Assistance of bioinformatics along with vaccinomics strategy can bring about a quantum leap in this direction for surpassing the bottleneck in conventional approaches. These specifics together can add to our conception that HIV-2 vaccine design by in silico strategy will surely be a constructive approach for HIV-1 targeting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...