Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 7(22)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36256464

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) remains resistant to immune therapies, largely owing to robustly fibrotic and immunosuppressive tumor microenvironments. It has been postulated that excessive accumulation of immunosuppressive myeloid cells influences immunotherapy resistance, and recent studies targeting macrophages in combination with checkpoint blockade have demonstrated promising preclinical results. Yet our understanding of tumor-associated macrophage (TAM) function, complexity, and diversity in PDA remains limited. Our analysis reveals significant macrophage heterogeneity, with bone marrow-derived monocytes serving as the primary source for immunosuppressive TAMs. These cells also serve as a primary source of TNF-α, which suppresses expression of the alarmin IL-33 in carcinoma cells. Deletion of Ccr2 in genetically engineered mice decreased monocyte recruitment, resulting in profoundly decreased TNF-α and increased IL-33 expression, decreased metastasis, and increased survival. Moreover, intervention studies targeting CCR2 with a new orthosteric inhibitor (CCX598) rendered PDA susceptible to checkpoint blockade, resulting in reduced metastatic burden and increased survival. Our data indicate that this shift in antitumor immunity is influenced by increased levels of IL-33, which increases dendritic cell and cytotoxic T cell activity. These data demonstrate that interventions to disrupt infiltration of immunosuppressive macrophages, or their signaling, have the potential to overcome barriers to effective immunotherapeutics for PDA.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-33/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Molecules ; 27(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35630829

RESUMEN

A number of 5'-O-fatty acyl derivatives of 3'-fluoro-2',3'-dideoxythymidine (FLT, 1) were synthesized. These conjugates were evaluated for their potential as topical microbicides with anti-HIV activity against cell-free (X4 and R5), cell-associated, and multidrug-resistant viruses. Compared to FLT and 3'-azido-2',3'-dideoxythymidine (AZT), 5'-O-(12-azidododecanoyl) (5), 5'-O-myristoyl (6), and 5'-O-(12-thioethyldodecanoyl) (8) derivatives of FLT were found to be more active against both cell-free viruses (lymphocytotropic and monocytotropic strains) with EC50 values of 0.4 µM, 1.1 µM, and <0.2 µM, respectively, as well as cell-associated virus with EC50 values of 12.6, 6.4, and 2.3 µM, respectively. Conjugates 5, 6, and 8 exhibited >4 and >30 times better antiviral index than FLT and AZT, respectively. Conjugates 5 and 8 were significantly more potent than FLT against many multidrug-resistant strains. A comparison of the anti-HIV activity with the corresponding non-hydrolyzable ether conjugates suggested that ester hydrolysis to FLT and fatty acids is critical to enable anti-HIV activity. Cellular uptake studies were conducted using fluorescent derivatives of FLT attached with 5(6)-carboxyfluorescein through either ß-alanine (23) or 12-aminododecanoic acid (24) spacers. The lipophilic fluorescent analog with a long chain (24) showed more than 12 times higher cellular uptake profile than the fluorescent analog with a short chain (23). These studies further confirmed that the attachment of fatty acids improved the cellular uptake of nucleoside conjugates. In addition, 5, 6, and 8 were the least cytotoxic and did not alter vaginal cell and sperm viability compared to the positive control, a commercial topical spermicide (N-9), which significantly decreased sperm and vaginal cell viability inducing the generation of proinflammatory cytokines.


Asunto(s)
Fármacos Anti-VIH , VIH-1 , Fármacos Anti-VIH/farmacología , Línea Celular , Didesoxinucleósidos , Ésteres , Ácidos Grasos/farmacología
3.
Gastroenterology ; 159(5): 1882-1897.e5, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32768595

RESUMEN

BACKGROUND & AIMS: Pancreatic ductal adenocarcinomas (PDACs) are hypovascular, resulting in the up-regulation of hypoxia inducible factor 1 alpha (HIF1A), which promotes the survival of cells under low-oxygen conditions. We studied the roles of HIF1A in the development of pancreatic tumors in mice. METHODS: We performed studies with KrasLSL-G12D/+;Trp53LSL-R172H/+;Pdx1-Cre (KPC) mice, KPC mice with labeled pancreatic epithelial cells (EKPC), and EKPC mice with pancreas-specific depletion of HIF1A. Pancreatic and other tissues were collected and analyzed by histology and immunohistochemistry. Cancer cells were cultured from PDACs from mice and analyzed in cell migration and invasion assays and by immunoblots, real-time polymerase chain reaction, and liquid chromatography-mass spectrometry. We performed studies with the human pancreatic cancer cell lines PATU-8988T, BxPC-3, PANC-1, and MiaPACA-2, which have no or low metastatic activity, and PATU-8988S, AsPC-1, SUIT-2 and Capan-1, which have high metastatic activity. Expression of genes was knocked down in primary cancer cells and pancreatic cancer cell lines by using small hairpin RNAs; cells were injected intravenously into immune-competent and NOD/SCID mice, and lung metastases were quantified. We compared levels of messenger RNAs in pancreatic tumors and normal pancreas in The Cancer Genome Atlas. RESULTS: EKPC mice with pancreas-specific deletion of HIF1A developed more advanced pancreatic neoplasias and PDACs with more invasion and metastasis, and had significantly shorter survival times, than EKPC mice. Pancreatic cancer cells from these tumors had higher invasive and metastatic activity in culture than cells from tumors of EKPC mice. HIF1A-knockout pancreatic cancer cells had increased expression of protein phosphatase 1 regulatory inhibitor subunit 1B (PPP1R1B). There was an inverse correlation between levels of HIF1A and PPP1R1B in human PDAC tumors; higher expression of PPP1R1B correlated with shorter survival times of patients. Metastatic human pancreatic cancer cell lines had increased levels of PPP1R1B and lower levels of HIF1A compared with nonmetastatic cancer cell lines; knockdown of PPP1R1B significantly reduced the ability of pancreatic cancer cells to form lung metastases in mice. PPP1R1B promoted degradation of p53 by stabilizing phosphorylation of MDM2 at Ser166. CONCLUSIONS: HIF1A can act a tumor suppressor by preventing the expression of PPP1R1B and subsequent degradation of the p53 protein in pancreatic cancer cells. Loss of HIF1A from pancreatic cancer cells increases their invasive and metastatic activity.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Movimiento Celular , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/secundario , Línea Celular Tumoral , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/deficiencia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Invasividad Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteolisis , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo , Hipoxia Tumoral , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba
4.
Am J Physiol Gastrointest Liver Physiol ; 317(4): G463-G475, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31433214

RESUMEN

In the current study, we explored the role of extracellular ATP (eATP) in promoting systemic inflammation during development of acute pancreatitis (AP). Release of extracellular (e)ATP was evaluated in plasma and bronchoalveolar lavage fluid (BALF) of mice with experimental acute pancreatitis (AP). Prophylactic intervention using apyrase or suramin was used to understand the role and contribution of eATP in pancreatitis-associated systemic injury. AP of varying severity was induced in C57BL/6 mice using 1-day or 2-day caerulein, caerulein + LPS and l-arginine models. eATP was measured in plasma and BALF. Mice were treated with suramin or apyrase in the caerulein and l-arginine models of AP. Plasma cytokines, lung, and pancreatic myeloperoxidase, and morphometric analysis of pancreatic and lung histology, were used to assess the severity of pancreatitis. Plasma eATP and purinergic 2 (P2) receptors in the pancreas and lungs were significantly elevated in the experimental models of AP. Blocking the effect of eATP by suramin led to reduced levels of plasma IL-6 and TNFα as well as reduced lung, and pancreatic injury. Neutralizing eATP with apyrase reduced systemic injury but did not ameliorate local injury. The results of this study support the role of eATP and P2 receptors in promoting systemic inflammation during AP. Modulating purinergic signaling during AP can be an important therapeutic strategy in controlling systemic inflammation and, thus, systemic inflammatory response syndrome during AP.NEW & NOTEWORTHY Released ATP from injured cells promotes systemic inflammation in acute pancreatitis.


Asunto(s)
Adenosina Trifosfato/metabolismo , Inflamación/metabolismo , Pancreatitis/metabolismo , Enfermedad Aguda , Adenosina Trifosfato/sangre , Animales , Apirasa/farmacología , Arginina , Líquido del Lavado Bronquioalveolar/química , Ceruletida , Citocinas/sangre , Citocinas/metabolismo , Inflamación/inducido químicamente , Inflamación/prevención & control , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Páncreas/metabolismo , Pancreatitis/inducido químicamente , Pancreatitis/prevención & control , Peroxidasa/metabolismo , Receptores Purinérgicos/metabolismo , Transducción de Señal , Suramina/farmacología
5.
Gut ; 67(4): 600-602, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28642332

RESUMEN

BACKGROUND: Opioids such as morphine are widely used for the management of pain associated with acute pancreatitis. Interestingly, opioids are also known to affect the immune system and modulate inflammatory pathways in non-pancreatic diseases. However, the impact of morphine on the progression of acute pancreatitis has never been evaluated. In the current study, we evaluated the impact of morphine on the progression and severity of acute pancreatitis. METHODS: Effect of morphine treatment on acute pancreatitis in caerulein, L-arginine and ethanol-palmitoleic acid models was evaluated after induction of the disease. Inflammatory response, gut permeability and bacterial translocation were compared. Experiments were repeated in mu (µ) opioid receptor knockout mice (MORKO) and in wild-type mice in the presence of opioid receptor antagonist naltrexone to evaluate the role of µ-opioid receptors in morphine's effect on acute pancreatitis. Effect of morphine treatment on pathways activated during pancreatic regeneration like sonic Hedgehog and activation of embryonic transcription factors like pdx-1 and ptf-1 were measured by immunofluorescence and quantitative PCR. RESULTS: Histological data show that treatment with morphine after induction of acute pancreatitis exacerbates the disease with increased pancreatic neutrophilic infiltration and necrosis in all three models of acute pancreatitis. Morphine also exacerbated acute pancreatitis-induced gut permeabilisation and bacteraemia. These effects were antagonised in the MORKO mice or in the presence of naltrexone suggesting that morphine's effect on severity of acute pancreatitis are mediated through the µ-opioid receptors. Morphine treatment delayed macrophage infiltration, sonic Hedgehog pathway activation and expression of pdx-1 and ptf-1. CONCLUSION: Morphine treatment worsens the severity of acute pancreatitis and delays resolution and regeneration. Considering our results, the safety of morphine for analgesia during acute pancreatitis should be re-evaluated in future human studies.


Asunto(s)
Analgésicos Opioides/efectos adversos , Morfina/efectos adversos , Páncreas/patología , Pancreatitis/diagnóstico , Enfermedad Aguda , Analgésicos Opioides/administración & dosificación , Animales , Arginina , Ceruletida , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ácidos Grasos Monoinsaturados , Ratones , Ratones Noqueados , Morfina/administración & dosificación , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Índice de Severidad de la Enfermedad , Factores de Tiempo
6.
Am J Physiol Gastrointest Liver Physiol ; 311(5): G974-G980, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27686613

RESUMEN

In the current study, we have characterized the global miRNA expression profile in mouse pancreatic acinar cells and during acute pancreatitis using next-generation RNA sequencing. We identified 324 known and six novel miRNAs that are expressed in mouse pancreatic acinar cells. In the basal state, miR-148a-3p, miR-375-3p, miR-217-5p, and miR-200a-3p were among the most abundantly expressed, whereas miR-24-5p and miR-421-3p were the least abundant. Treatment of acinar cells with caerulein (100 nM) and taurolithocholic acid 3-sulfate [TLC-S (250 µM)] induced numerous changes in miRNA expression profile. In particular, we found significant overexpression of miR-21-3p in acini treated with caerulein and TLC-S. We further looked at the expression of miR-21-3p in caerulein, l-arginine, and caerulein + LPS-induced acute pancreatitis mouse models and found 12-, 21-, and 50-fold increased expression in the pancreas, respectively. In summary, this is the first comprehensive analysis of global miRNA expression profile of mouse pancreatic acinar cells in normal and disease conditions. Our analysis shows that miR-21-3p expression level correlates with the severity of the disease.


Asunto(s)
Células Acinares/metabolismo , MicroARNs/metabolismo , Pancreatitis/metabolismo , Células Acinares/efectos de los fármacos , Animales , Ceruletida/farmacología , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , MicroARNs/genética , Pancreatitis/genética , Ácido Taurolitocólico/análogos & derivados , Ácido Taurolitocólico/farmacología
7.
Gastroenterology ; 151(4): 747-758.e5, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27519471

RESUMEN

BACKGROUND & AIMS: Experimental studies in acute pancreatitis (AP) suggest a strong association of acinar cell injury with cathepsin B-dependent intracellular activation of trypsin. However, the molecular events subsequent to trypsin activation and their role, if any, in cell death is not clear. In this study, we have explored intra-acinar events downstream of trypsin activation that lead to acinar cell death. METHODS: Acinar cells prepared from the pancreas of rats or mice (wild-type, trypsinogen 7, or cathepsin B-deleted) were stimulated with supramaximal cerulein, and the cytosolic activity of cathepsin B and trypsin was evaluated. Permeabilized acini were used to understand the differential role of cytosolic trypsin vs cytosolic cathepsin B in activation of apoptosis. Cell death was evaluated by measuring specific markers for apoptosis and necrosis. RESULTS: Both in vitro and in vivo studies have suggested that during AP cathepsin B leaks into the cytosol from co-localized organelles, through a mechanism dependent on active trypsin. Cytosolic cathepsin B but not trypsin activates the intrinsic pathway of apoptosis through cleavage of bid and activation of bax. Finally, excessive release of cathepsin B into the cytosol can lead to cell death through necrosis. CONCLUSIONS: This report defines the role of trypsin in AP and shows that cytosolic cathepsin B but not trypsin activates cell death pathways. This report also suggests that trypsin is a requisite for AP only because it causes release of cathepsin B into the cytosol.


Asunto(s)
Células Acinares/enzimología , Catepsina B/fisiología , Muerte Celular/fisiología , Citosol/enzimología , Pancreatitis/enzimología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Páncreas/citología , Pancreatitis/patología , Ratas , Ratas Wistar , Tripsina/fisiología
8.
J Plant Physiol ; 179: 106-12, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25855000

RESUMEN

Calcium plays a crucial role as a secondary messenger in all aspects of plant growth, development and survival. Calcium dependent protein kinases (CDPKs) are the major calcium decoders, which couple the changes in calcium level to an appropriate physiological response. The mechanism by which calcium regulates CDPK protein is not well understood. In this study, we investigated the interactions of Ca(2+) ions with the CDPK1 isoform of Cicer arietinum (CaCDPK1) using a combination of biophysical tools. CaCDPK1 has four different EF hands as predicted by protein sequence analysis. The fluorescence emission spectrum of CaCDPK1 showed quenching with a 5 nm red shift upon addition of calcium, indicating conformational changes in the tertiary structure. The plot of changes in intensity against calcium concentrations showed a biphasic curve with binding constants of 1.29 µM and 120 µM indicating two kinds of binding sites. Isothermal calorimetric (ITC) titration with CaCl2 also showed a biphasic curve with two binding constants of 0.027 µM and 1.7 µM. Circular dichroism (CD) spectra showed two prominent peaks at 208 and 222 nm indicating that CaCDPK1 is a α-helical rich protein. Calcium binding further increased the α-helical content of CaCDPK1 from 75 to 81%. Addition of calcium to CaCDPK1 also increased fluorescence of 8-anilinonaphthalene-1-sulfonic acid (ANS) indicating exposure of hydrophobic surfaces. Thus, on the whole this study provides evidence for calcium induced conformational changes, exposure of hydrophobic surfaces and heterogeneity of EF hands in CaCDPK1.


Asunto(s)
Calcio/metabolismo , Cicer/enzimología , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Secuencia de Aminoácidos , Calorimetría , Dicroismo Circular , Datos de Secuencia Molecular , Fosforilación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Quinasas/química , Proteínas Quinasas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Termodinámica
9.
J Biol Chem ; 289(40): 27551-61, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25077966

RESUMEN

The pathogenesis of chronic pancreatitis (CP) is poorly understood. Endoplasmic reticulum (ER) stress has now been recognized as a pathogenic event in many chronic diseases. However, ER stress has not been studied in CP, although pancreatic acinar cells seem to be especially vulnerable to ER dysfunction because of their dependence on high ER volume and functionality. Here, we aim to investigate ER stress in CP, study its pathogenesis in relation to trypsinogen activation (widely regarded as the key event of pancreatitis), and explore its mechanism, time course, and downstream consequences during pancreatic injury. CP was induced in mice by repeated episodes of acute pancreatitis (AP) based on caerulein hyperstimulation. ER stress leads to activation of unfolded protein response components that were measured in CP and AP. We show sustained up-regulation of unfolded protein response components ATF4, CHOP, GRP78, and XBP1 in CP. Overexpression of GRP78 and ATF4 in human CP confirmed the experimental findings. We used novel trypsinogen-7 knock-out mice (T(-/-)), which lack intra-acinar trypsinogen activation, to clarify the relationship of ER stress to intra-acinar trypsinogen activation in pancreatic injury. Comparable activation of ER stress was seen in wild type and T(-/-) mice. Induction of ER stress occurred through pathologic calcium signaling very early in the course of pancreatic injury. Our results establish that ER stress is chronically activated in CP and is induced early in pancreatic injury through pathologic calcium signaling independent of trypsinogen activation. ER stress may be an important pathogenic mechanism in pancreatitis that needs to be explored in future studies.


Asunto(s)
Estrés del Retículo Endoplásmico , Pancreatitis Crónica/metabolismo , Células Acinares/enzimología , Células Acinares/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Chaperón BiP del Retículo Endoplásmico , Femenino , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Ratones , Pancreatitis Crónica/enzimología , Pancreatitis Crónica/genética , Tripsinógeno/genética , Tripsinógeno/metabolismo , Respuesta de Proteína Desplegada
10.
Appl Microbiol Biotechnol ; 97(8): 3429-39, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22760783

RESUMEN

In plants, calcium-dependent protein kinases (CDPKs) are key intermediates in calcium-mediated signaling that couple changes in Ca(2+) levels to a specific response. In the present study, we report the high-level soluble expression of calcium-dependent protein kinase1 from Cicer arietinum (CaCDPK1) in Escherichia coli. The expression of soluble CaCDPK1 was temperature dependent with a yield of 3-4 mg/l of bacterial culture. CaCDPK1 expressed as histidine-tag fusion protein was purified using Ni-NTA affinity chromatography till homogeneity. The recombinant CaCDPK1 protein exhibited both calcium-dependent autophosphorylation and substrate phosphorylation activities with a V max and K m value of 13.2 nmol/min/mg and 34.3 µM, respectively, for histone III-S as substrate. Maximum autophosphorylation was seen only in the presence of calcium. Optimum temperature for autophosphorylation was found to be 37 °C. The recombinant protein showed optimum pH range of 6-9. The role of autophosphorylation in substrate phosphorylation was investigated using histone III-S as exogenous substrate. Our results show that autophosphorylation happens before substrate phosphorylation and it happens via intra-molecular mechanism as the activity linearly depends on enzyme concentrations. Autophosphorylation enhances the kinase activity and reduces the lag phase of activation, and CaCDPK1 can utilize both ATP and GTP as phosphodonor but ATP is preferred than GTP.


Asunto(s)
Calcio/metabolismo , Cicer/enzimología , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Adenosina Trifosfato/metabolismo , Cromatografía de Afinidad , Cicer/genética , Clonación Molecular , Coenzimas/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Guanosina Trifosfato/metabolismo , Histonas/metabolismo , Concentración de Iones de Hidrógeno , Fosforilación , Proteínas Quinasas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Temperatura
11.
PLoS One ; 7(12): e51591, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284721

RESUMEN

Phospholipids, the major structural components of membranes, can also have functions in regulating signaling pathways in plants under biotic and abiotic stress. The effects of adding phospholipids on the activity of stress-induced calcium dependent protein kinase (CaCDPK1) from chickpea are reported here. Both autophosphorylation as well as phosphorylation of the added substrate were enhanced specifically by phosphatidylcholine and to a lesser extent by phosphatidic acid, but not by phosphatidylethanolamine. Diacylgylerol, the neutral lipid known to activate mammalian PKC, stimulated CaCDPK1 but at higher concentrations. Increase in V(max) of the enzyme activity by these phospholipids significantly decreased the K(m) indicating that phospholipids enhance the affinity towards its substrate. In the absence of calcium, addition of phospholipids had no effect on the negligible activity of the enzyme. Intrinsic fluorescence intensity of the CaCDPK1 protein was quenched on adding PA and PC. Higher binding affinity was found with PC (K(½) = 114 nM) compared to PA (K(½) = 335 nM). We also found that the concentration of PA increased in chickpea plants under salt stress. The stimulation by PA and PC suggests regulation of CaCDPK1 by these phospholipids during stress response.


Asunto(s)
Diglicéridos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Fosfatidiletanolaminas/farmacología , Fosfolípidos/farmacología , Proteínas Quinasas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Calcio/metabolismo , Cicer , Fluorescencia , Fosforilación/efectos de los fármacos , Cloruro de Sodio/farmacología
12.
Ir J Psychol Med ; 28(4): 201-204, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30200007

RESUMEN

OBJECTIVE: Substance misuse complicates an individual's management in adult Mental Health services. This study aimed to examine both the overall prevalence of substance misuse in those admitted to the psychiatric unit and additionally those admitted with a primary diagnosis and comorbid substance misuse. The study focuses on the associated diagnoses and demographics in 100 consecutive admissions to an acute psychiatric unit in an Irish university hospital. METHOD: Clinical notes were reviewed independently by two members (one being a doctor), of the multi-professional research team within four days of their admission. Substance misuse proximal to the/at the time of admission (reflecting the current usage) was noted. RESULTS: The combined prevalence of mental illness and substance misuse was 47% (CI 37-57%). Twenty two out of 100 (22%, CI 14-32%) were admitted primarily for the management of substance misuse and dependence (plus psychosocial reasons). Twenty-five of the patients admitted with a primary psychiatric illness (25%, CI 17-31%) were discovered to have comorbid substance misuse. At risk groups were found to be males and aged under 45 years. CONCLUSION: Our study demonstrates the importance of screening and identification for substance misuse in psychiatric inpatient units; and consequently, the need for individual case management, additional development of dual diagnosis services and accurate patient data reporting to facilitate forward service-planning.

13.
Ir J Psychol Med ; 28(2): 104-105, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30200046
15.
Ir J Psychol Med ; 27(1): 50, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30282299
16.
J Med Chem ; 52(4): 1050-62, 2009 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-19140666

RESUMEN

Aurora kinases have emerged as attractive targets for the design of anticancer drugs. Through structure-based virtual screening, novel pyrazole hit 8a was identified as Aurora kinase A inhibitor (IC(50) = 15.1 microM). X-ray cocrystal structure of 8a in complex with Aurora A protein revealed the C-4 position ethyl carboxylate side chain as a possible modification site for improving the potency. On the basis of this insight, bioisosteric replacement of the ester with amide linkage and changing the ethyl substituent to hydrophobic 3-acetamidophenyl ring led to the identification of 12w with a approximately 450-fold improved Aurora kinase A inhibition potency (IC(50) = 33 nM), compared to 8a. Compound 12w showed selective inhibition of Aurora A kinase over Aurora B/C, which might be due to the presence of a unique H-bond interaction between the 3-acetamido group and the Aurora A nonconserved Thr217 residue, which in Aurora B/C is Glu and found to sterically clash with the 3-acetamido group in modeling studies.


Asunto(s)
Antineoplásicos/química , Diseño de Fármacos , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Amidas , Antineoplásicos/farmacología , Aurora Quinasa A , Aurora Quinasa B , Aurora Quinasas , Cristalografía por Rayos X , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Concentración 50 Inhibidora , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Especificidad por Sustrato
17.
Ir J Psychol Med ; 25(4): 158-159, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30282258
18.
20.
Org Lett ; 8(13): 2799-802, 2006 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-16774260

RESUMEN

[reaction: see text] A series of carbazole/fluorene (CBZm-Fn) hybrids were effectively synthesized through Friedel-Crafts-type substitution of the carbazole rings. These compounds were thermally and morphologically stable host materials for OLED applications. Efficient blue phosphorescent OLEDs were obtained when employing CBZ1-F2 as the host and FIrpic as the guest.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...