Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
eNeuro ; 10(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553242

RESUMEN

Extrasynaptic GABAA receptors (GABAARs) composed of α4, ß, and δ subunits mediate GABAergic tonic inhibition and are potential molecular targets in the modulation of behavioral responses to natural and drug rewards. These GABAARs are highly expressed within the nucleus accumbens (NAc), where they influence the excitability of the medium spiny neurons. Here, we explore their role in modulating behavioral responses to food-conditioned cues and the behavior-potentiating effects of cocaine. α4-Subunit constitutive knock-out mice (α4-/-) showed higher rates of instrumental responding for reward-paired stimuli in a test of conditioned reinforcement (CRf). A similar effect was seen following viral knockdown of GABAAR α4 subunits within the NAc. Local infusion of the α4ßδ-GABAAR-preferring agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; Gaboxadol) into the NAc had no effect on responding when given alone but reduced cocaine potentiation of responding for conditioned reinforcers in wild-type, but not α4-/- mice. Finally, specific deletion of α4-subunits from dopamine D2, but not D1, receptor-expressing neurons (DRD2 and DRD1 neurons), mimicked the phenotype of the constitutive knockout, potentiating CRf responding, and blocking intra-accumbal THIP attenuation of cocaine-potentiated CRf responding. These data demonstrate that α4-GABAAR-mediated inhibition of DRD2 neurons reduces instrumental responding for a conditioned reinforcer and its potentiation by cocaine and emphasize the importance of GABAergic signaling within the NAc in mediating the effects of cocaine.


Asunto(s)
Cocaína , Ratones , Animales , Cocaína/farmacología , Núcleo Accumbens , Receptores de GABA-A , Neuronas , Ratones Noqueados , Ácido gamma-Aminobutírico/farmacología , Receptores de Dopamina D2
2.
Behav Pharmacol ; 30(2 and 3-Spec Issue): 272-281, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30724801

RESUMEN

Early-life stress (ELS) is known to exert long-term effects on brain function, with resulting deleterious consequences for several aspects of mental health, including the development of addiction to drugs of abuse. One potential mechanism in humans is suggested by findings that ELS interacts with polymorphisms of the GABRA2 gene, encoding α2 subunits of GABAA receptors, to increase the risk for both post-traumatic stress disorder and vulnerability to cocaine addiction. We used a mouse model, in which the amount of material for nest building was reduced during early postnatal life, to study interactions between ELS and expression of α2-containing GABAA receptors in influencing cocaine-related behaviour. Breeding of parents heterozygous for a deletion of α2 resulted in litters containing homozygous knockout (α2), heterozygous knockout (α2) and wild-type (α2) offspring. Following the ELS procedure, the mice were allowed to develop to adulthood before being tested for the acute effect of cocaine on locomotor stimulation, behavioural sensitization to repeated cocaine and to cocaine-conditioned activity. Exposure to ELS resulted in increased acute locomotor stimulant effects of cocaine across all genotypes, with the most marked effects in α2 mice (which also showed increased activity following vehicle). Repeated cocaine administration to nonstressed mice resulted in sensitization in α2 and α2 mice, but, in keeping with previous findings, not in α2 mice. Previous exposure to ELS reduced sensitization in α2 mice, albeit not significantly, and abolished sensitization in α2 mice. Conditioned activity was elevated following ELS in all animals, independently of genotype. Thus, while the enhanced acute effects of cocaine following ELS being most marked in α2 mice suggests a function of α2-containing GABAA receptors in protecting against stress, the interaction between ELS and genotype in influencing sensitization may be more in keeping with ELS reducing expression of α2-containing GABAA receptors. The ability of ELS to increase cocaine-conditioned locomotor activity appears to be independent of α2-containing GABAA receptors.


Asunto(s)
Cocaína/farmacología , Receptores de GABA-A/efectos de los fármacos , Estrés Psicológico/fisiopatología , Animales , Trastornos Relacionados con Cocaína/fisiopatología , Aprendizaje/efectos de los fármacos , Locomoción/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de GABA-A/metabolismo
3.
Neuropharmacology ; 141: 98-112, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30138693

RESUMEN

Haplotypes of the Gabra2 gene encoding the α2-subunit of the GABAA receptor (GABAAR) are associated with drug abuse, suggesting that α2-GABAARs may play an important role in the circuitry underlying drug misuse. The genetic association of Gabra2 haplotypes with cocaine addiction appears to be evident primarily in individuals who had experienced childhood trauma. Given this association of childhood trauma, cocaine abuse and the Gabra2 haplotypes, we have explored in a mouse model of early life adversity (ELA) whether such events influence the behavioral effects of cocaine and if, as suggested by the human studies, α2-GABAARs in the nucleus accumbens (NAc) are involved in these perturbed behaviors. In adult mice prior ELA caused a selective decrease of accumbal α2-subunit mRNA, resulting in a selective decrease in the number and size of the α2-subunit (but not the α1-subunit) immunoreactive clusters in NAc core medium spiny neurons (MSNs). Functionally, in adult MSNs ELA decreased the amplitude and frequency of GABAAR-mediated miniature inhibitory postsynaptic currents (mIPSCs), a profile similar to that of α2 "knock-out" (α2-/-) mice. Behaviourally, adult male ELA and α2-/- mice exhibited an enhanced locomotor response to acute cocaine and blunted sensitisation upon repeated cocaine administration, when compared to their appropriate controls. Collectively, these findings reveal a neurobiological mechanism which may relate to the clinical observation that early trauma increases the risk for substance abuse disorder (SAD) in individuals harbouring haplotypic variations in the Gabra2 gene.


Asunto(s)
Cocaína/farmacología , Locomoción/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Receptores de GABA-A/biosíntesis , Animales , Sensibilización del Sistema Nervioso Central/fisiología , Femenino , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Ratones , Ratones Noqueados , Potenciales Postsinápticos Miniatura/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Núcleo Accumbens/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/fisiología
4.
Front Behav Neurosci ; 9: 304, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635556

RESUMEN

BACKGROUND: Variations in the GABRA2 gene, encoding α2 subunits of GABAA receptors, have been associated with risk for addiction to several drugs, but the mechanisms by which variations in non-coding regions of GABRA2 increase risk for addictions are not understood. Mice with deletion of GABRA2 show deficits in the ability of psychostimulants to facilitate responding for conditioned reinforcers, offering a potential explanation. METHODS: We report human and mouse studies investigating a potential endophenotype underlying this association. Healthy human volunteers carrying either cocaine-addiction "risk" or "protective" GABRA2 single nucleotide polymorphism (SNPs) were tested for their subjective responses to methylphenidate, and methylphenidate's ability to facilitate conditioned reinforcement (CRf) for visual stimuli (CS+) associated with monetary reward. In parallel, methylphenidate's ability to facilitate responding for a visual CRf was studied in wildtype and α2 knockout (α2(-/-)) mice. RESULTS: Methylphenidate increased the number of CS+ presentations obtained by human subjects carrying protective, but not risk SNPs. In mice, methylphenidate increased responding for a CS+ in wildtype, but not α2(-/-) mice. Human subjects carrying protective SNPs felt stimulated, aroused and restless following methylphenidate, while individuals carrying risk SNPs did not. CONCLUSION: Human risk SNP carriers were insensitive to methylphenidate's effects on mood or in facilitating CRf. That mice with the gene deletion were also insensitive to methylphenidate's ability to increase responding for CRf, suggests a potential mechanism whereby low α2-subunit levels increase risk for addictions. Circuits employing GABAA-α2 subunit-containing receptors may protect against risk for addictions.

5.
Curr Addict Rep ; 2(1): 33-46, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26301171

RESUMEN

It is becoming increasingly evident that a variety of factors contribute to smoking behavior. Nicotine is a constituent of tobacco smoke that exerts its psychoactive effects via binding to nicotinic acetylcholine receptors (nAChRs) in brain. Human genetic studies have identified polymorphisms in nAChR genes, which predict vulnerability to risk for tobacco dependence. In vitro studies and animal models have identified the functional relevance of specific polymorphisms. Together with animal behavioral models, which parse behaviors believed to contribute to tobacco use in humans, these studies demonstrate that nicotine action at a diversity of nAChRs is important for expression of independent behavioral phenotypes, which support smoking behavior.

6.
J Neurosci ; 34(3): 823-38, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24431441

RESUMEN

Within the nucleus accumbens (NAc), synaptic GABAA receptors (GABAARs) mediate phasic inhibition of medium spiny neurons (MSNs) and influence behavioral responses to cocaine. We demonstrate that both dopamine D1- and D2-receptor-expressing MSNs (D-MSNs) additionally harbor extrasynaptic GABAARs incorporating α4, ß, and δ subunits that mediate tonic inhibition, thereby influencing neuronal excitability. Both the selective δ-GABAAR agonist THIP and DS2, a selective positive allosteric modulator, greatly increased the tonic current of all MSNs from wild-type (WT), but not from δ(-/-) or α4(-/-) mice. Coupling dopamine and tonic inhibition, the acute activation of D1 receptors (by a selective agonist or indirectly by amphetamine) greatly enhanced tonic inhibition in D1-MSNs but not D2-MSNs. In contrast, prolonged D2 receptor activation modestly reduced the tonic conductance of D2-MSNs. Behaviorally, WT and constitutive α4(-/-) mice did not differ in their expression of cocaine-conditioned place preference (CPP). Importantly, however, mice with the α4 deletion specific to D1-expressing neurons (α4(D1-/-)) showed increased CPP. Furthermore, THIP administered systemically or directly into the NAc of WT, but not α4(-/-) or α4(D1-/-) mice, blocked cocaine enhancement of CPP. In comparison, α4(D2-/-) mice exhibited normal CPP, but no cocaine enhancement. In conclusion, dopamine modulation of GABAergic tonic inhibition of D1- and D2-MSNs provides an intrinsic mechanism to differentially affect their excitability in response to psychostimulants and thereby influence their ability to potentiate conditioned reward. Therefore, α4ßδ GABAARs may represent a viable target for the development of novel therapeutics to better understand and influence addictive behaviors.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Inhibición Neural/fisiología , Núcleo Accumbens/fisiología , Receptores de GABA-A/fisiología , Sinapsis/fisiología , Animales , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Inhibición Neural/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Sinapsis/efectos de los fármacos
7.
Nat Commun ; 4: 2816, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24281383

RESUMEN

Alcohol dependence is a common, complex and debilitating disorder with genetic and environmental influences. Here we show that alcohol consumption increases following mutations to the γ-aminobutyric acidA receptor (GABAAR) ß1 subunit gene (Gabrb1). Using N-ethyl-N-nitrosourea mutagenesis on an alcohol-averse background (F1 BALB/cAnN x C3H/HeH), we develop a mouse model exhibiting strong heritable preference for ethanol resulting from a dominant mutation (L285R) in Gabrb1. The mutation causes spontaneous GABA ion channel opening and increases GABA sensitivity of recombinant GABAARs, coupled to increased tonic currents in the nucleus accumbens, a region long-associated with alcohol reward. Mutant mice work harder to obtain ethanol, and are more sensitive to alcohol intoxication. Another spontaneous mutation (P228H) in Gabrb1 also causes high ethanol consumption accompanied by spontaneous GABA ion channel opening and increased accumbal tonic current. Our results provide a new and important link between GABAAR function and increased alcohol consumption that could underlie some forms of alcohol abuse.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Receptores de GABA-A/genética , Trastornos Relacionados con Alcohol/genética , Animales , Femenino , Genes Dominantes , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Núcleo Accumbens/fisiología , Mutación Puntual , Receptores de GABA-A/metabolismo
8.
PLoS One ; 7(10): e47135, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23115637

RESUMEN

Human genetic studies have suggested that polymorphisms of the GABRA2 gene encoding the GABA(A) α2-subunit are associated with ethanol dependence. Variations in this gene also convey sensitivity to the subjective effects of ethanol, indicating a role in mediating ethanol-related behaviours. We therefore investigated the consequences of deleting the α2-subunit on the ataxic and rewarding properties of ethanol in mice. Ataxic and sedative effects of ethanol were explored in GABA(A) α2-subunit wildtype (WT) and knockout (KO) mice using a Rotarod apparatus, wire hang and the duration of loss of righting reflex. Following training, KO mice showed shorter latencies to fall than WT littermates under ethanol (2 g/kg i.p.) in both Rotarod and wire hang tests. After administration of ethanol (3.5 g/kg i.p.), KO mice took longer to regain the righting reflex than WT mice. To ensure the acute effects are not due to the gabra2 deletion affecting pharmacokinetics, blood ethanol concentrations were measured at 20 minute intervals after acute administration (2 g/kg i.p.), and did not differ between genotypes. To investigate ethanol's rewarding properties, WT and KO mice were trained to lever press to receive increasing concentrations of ethanol on an FR4 schedule of reinforcement. Both WT and KO mice self-administered ethanol at similar rates, with no differences in the numbers of reinforcers earned. These data indicate a protective role for α2-subunits, against the acute sedative and ataxic effects of ethanol. However, no change was observed in ethanol self administration, suggesting the rewarding effects of ethanol remain unchanged.


Asunto(s)
Hipersensibilidad a las Drogas , Etanol/farmacología , Eliminación de Gen , Receptores de GABA-A/genética , Autoadministración , Animales , Etanol/administración & dosificación , Etanol/sangre , Masculino , Ratones , Ratones Noqueados , Prueba de Desempeño de Rotación con Aceleración Constante
9.
Behav Pharmacol ; 22(1): 76-80, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21127416

RESUMEN

A clear interrelationship between biological rhythms and addiction has emerged from recent preclinical and clinical studies. In particular, the manipulation of the so-called 'clock genes' interferes with the manifestation of drug-related responses. For instance, Period 1 (Per1(Brdm1)) mutant mice do not display behavioural sensitization in response to repeated cocaine administration and do not express cocaine conditioned place preference, in contrast to control littermates. To assess the involvement of the mPer1 gene in a robust model of cocaine reinforcement and relapse-like behaviour, we tested Per1(Brdm1) mutant mice and their littermates for self-administration of several doses (0.06-0.75 mg/kg/infusion) of cocaine, and for reinstatement of an extinguished cocaine-seeking response. Per1(Brdm1) mutant mice did not differ from control littermates in their propensity to self-administer cocaine or to reinstate an extinguished cocaine-seeking behaviour in response to drug-associated cues or cocaine priming. In contrast to our earlier data on Per1(Brdm1) mutant mice in cocaine sensitization and conditioned place preference, this finding does not suggest a relationship between the circadian clock gene mPer1 in cocaine self-administration and reinstatement of cocaine-seeking behaviour. This study adds one further example to the notion that various behavioural tests usually used in addiction research rely on different neurobiological substrates.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cocaína/administración & dosificación , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Proteínas Circadianas Period/genética , Animales , Conducta Animal/fisiología , Comportamiento de Búsqueda de Drogas/fisiología , Extinción Psicológica/fisiología , Ratones , Proteínas Circadianas Period/metabolismo , Autoadministración
10.
Proc Natl Acad Sci U S A ; 107(5): 2289-94, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20133874

RESUMEN

Because GABA(A) receptors containing alpha2 subunits are highly represented in areas of the brain, such as nucleus accumbens (NAcc), frontal cortex, and amygdala, regions intimately involved in signaling motivation and reward, we hypothesized that manipulations of this receptor subtype would influence processing of rewards. Voltage-clamp recordings from NAcc medium spiny neurons of mice with alpha2 gene deletion showed reduced synaptic GABA(A) receptor-mediated responses. Behaviorally, the deletion abolished cocaine's ability to potentiate behaviors conditioned to rewards (conditioned reinforcement), and to support behavioral sensitization. In mice with a point mutation in the benzodiazepine binding pocket of alpha2-GABA(A) receptors (alpha2H101R), GABAergic neurotransmission in medium spiny neurons was identical to that of WT (i.e., the mutation was silent), but importantly, receptor function was now facilitated by the atypical benzodiazepine Ro 15-4513 (ethyl 8-amido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5-a] [1,4] benzodiazepine-3-carboxylate). In alpha2H101R, but not WT mice, Ro 15-4513 administered directly into the NAcc-stimulated locomotor activity, and when given systemically and repeatedly, induced behavioral sensitization. These data indicate that activation of alpha2-GABA(A) receptors (most likely in NAcc) is both necessary and sufficient for behavioral sensitization. Consistent with a role of these receptors in addiction, we found specific markers and haplotypes of the GABRA2 gene to be associated with human cocaine addiction.


Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/psicología , Cocaína/farmacología , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiología , Adulto , Animales , Azidas/farmacología , Benzodiazepinas/farmacología , Sitios de Unión/genética , Estudios de Casos y Controles , Trastornos Relacionados con Cocaína/genética , Condicionamiento Psicológico , Dopamina/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Mutación Puntual , Polimorfismo de Nucleótido Simple , Receptores de GABA-A/deficiencia , Recompensa , Adulto Joven
11.
Eur J Pain ; 10(6): 537-49, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16199187

RESUMEN

Clinically, inflammatory pain is far more persistent than that typically modelled pre-clinically, with the majority of animal models focussing on short-term effects of the inflammatory pain response. The large attrition rate of compounds in the clinic which show pre-clinical efficacy suggests the need for novel models of, or approaches to, chronic inflammatory pain if novel mechanisms are to make it to the market. A model in which a more chronic inflammatory hypersensitivity phenotype is profiled may allow for a more clinically predictive tool. The aims of these studies were to characterise and validate a chronic model of inflammatory pain. We have shown that injection of a large volume of adjuvant to the intra-articular space of the rat knee results in a prolonged inflammatory pain response, compared to the response in an acute adjuvant model. Additionally, this model also results in a hypersensitive state in the presence and absence of inflammation. A range of clinically effective analgesics demonstrate activity in this chronic model, including morphine (3mg/kg, t.i.d.), dexamethasone (1mg/kg, b.i.d.), ibuprofen (30mg/kg, t.i.d.), etoricoxib (5mg/kg, b.i.d.) and rofecoxib (0.3-10mg/kg, b.i.d.). A further aim was to exemplify the utility of this chronic model over the more acute intra-plantar adjuvant model using two novel therapeutic approaches; NR2B selective NMDA receptor antagonism and iNOS inhibition. Our data shows that different effects were observed with these therapies when comparing the acute model with the model of chronic inflammatory joint pain. These data suggest that the chronic model may be more relevant to identifying mechanisms for the treatment of chronic inflammatory pain states in the clinic.


Asunto(s)
Artritis/tratamiento farmacológico , Artritis/patología , Modelos Animales de Enfermedad , Dolor/tratamiento farmacológico , Dolor/patología , Animales , Artritis/inducido químicamente , Enfermedad Crónica , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Adyuvante de Freund , Lactonas/uso terapéutico , Masculino , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Dolor/inducido químicamente , Fenoles/uso terapéutico , Piperidinas/uso terapéutico , Ratas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Rodilla de Cuadrúpedos/fisiología , Sulfuros/uso terapéutico , Sulfonas/uso terapéutico , Factores de Tiempo , Soporte de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...