Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 378(6617): 270-276, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36264813

RESUMEN

Advanced machine learning models are currently impossible to run on edge devices such as smart sensors and unmanned aerial vehicles owing to constraints on power, processing, and memory. We introduce an approach to machine learning inference based on delocalized analog processing across networks. In this approach, named Netcast, cloud-based "smart transceivers" stream weight data to edge devices, enabling ultraefficient photonic inference. We demonstrate image recognition at ultralow optical energy of 40 attojoules per multiply (<1 photon per multiply) at 98.8% (93%) classification accuracy. We reproduce this performance in a Boston-area field trial over 86 kilometers of deployed optical fiber, wavelength multiplexed over 3 terahertz of optical bandwidth. Netcast allows milliwatt-class edge devices with minimal memory and processing to compute at teraFLOPS rates reserved for high-power (>100 watts) cloud computers.

2.
Phys Rev Lett ; 110(13): 130407, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23581303

RESUMEN

In this Letter, we derive an entropic Einstein-Podolsky-Rosen (EPR) steering inequality for continuous-variable systems using only experimentally measured discrete probability distributions and details of the measurement apparatus. We use this inequality to witness EPR steering between the positions and momenta of photon pairs generated in spontaneous parametric down-conversion. We examine the asymmetry between parties in this inequality, and show that this asymmetry can be used to reduce the technical requirements of experimental setups intended to demonstrate the EPR paradox. Furthermore, we develop a more stringent steering inequality that is symmetric between parties, and use it to show that the down-converted photon pairs also exhibit symmetric EPR steering.

3.
Phys Rev Lett ; 108(14): 143603, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22540794

RESUMEN

High-dimensional Hilbert spaces used for quantum communication channels offer the possibility of large data transmission capabilities. We propose a method of characterizing the channel capacity of an entangled photonic state in high-dimensional position and momentum bases. We use this method to measure the channel capacity of a parametric down-conversion state by measuring in up to 576 dimensions per detector. We achieve a channel capacity over 7 bits/photon in either the position or momentum basis. Furthermore, we provide a correspondingly high-dimensional separability bound that suggests that the channel performance cannot be replicated classically.

4.
Phys Rev Lett ; 102(17): 173601, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19518781

RESUMEN

We report on the use of an interferometric weak value technique to amplify very small transverse deflections of an optical beam. By entangling the beam's transverse degrees of freedom with the which-path states of a Sagnac interferometer, it is possible to realize an optical amplifier for polarization independent deflections. The theory for the interferometric weak value amplification method is presented along with the experimental results, which are in good agreement. Of particular interest, we measured the angular deflection of a mirror down to 400+/-200 frad and the linear travel of a piezo actuator down to 14+/-7 fm.

5.
Phys Rev Lett ; 102(1): 013902, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19257193

RESUMEN

We report on the experimental demonstration of an all-optical pi cross-phase modulation jump. By performing a preselection, an optically induced unitary transformation, and then a postselection on the polarization degree of freedom, the phase of the output beam acquires either a zero or pi phase shift (with no other possible values). The postselection results in optical loss in the output beam. An input state may be chosen near the resulting phase singularity, yielding a pi phase shift even for weak interaction strengths. The scheme is experimentally demonstrated using a coherently prepared dark state in a warm atomic cesium vapor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...